MATRICES

MATRICES

The eigenvalues a eigenvectors of the nestrine
$$A = \begin{pmatrix} 11 & -4 & -7 \\ 7 & -2 & -5 \end{pmatrix}$$

[NID 2016]

Sol: Griven $A = \begin{pmatrix} 11 & -4 & -7 \\ 7 & -2 & -5 \end{pmatrix}$

[NID 2011]

Characleristic equation:
$$\lambda^{3} = 5, \lambda^{2} + 5, \lambda - 5, \delta = 0$$
 $5_{1} = 5_{un}$ of the main diagonal elements = $11 - 2 - b = 3$
 $5_{2} = 5_{un}$ of the numbers of main diagonal elements

$$= \begin{vmatrix} -2 & -5 \\ -4 & -b \end{vmatrix} + \begin{vmatrix} 17 & -7 \\ 10 & -6 \end{vmatrix} + \begin{vmatrix} 11 & -4 \\ 7 & -2 \end{vmatrix} = (12 - 20) + (-bb + 70) + (-22 + 28)$$

$$= -8+4+6=2$$

$$5_3 = |A| = 11(12-20)+4(-42+50)-7(-28+20)=11(-8)+4(8)-7(-8)$$

$$= -88+32+56=0$$
× 1 +

Hence the eigenvalues are 0,1,2.

Eigenvectors:
$$(A-\lambda 1) \times = 0$$

 $\begin{pmatrix} 11-\lambda & -4 & -7 \\ 7 & -2-\lambda & -5 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = 0$

$$\begin{array}{c|cccc} & 7 & -2-\lambda & -5 \\ 10 & -4 & -b-\lambda \end{array} \begin{pmatrix} \chi_3 \\ \chi_2 \end{pmatrix} = 0$$

$$\frac{\lambda=0}{7} \begin{pmatrix} 11 & -4 & -7 \\ 7 & -2 & -5 \\ 10 & -4 & -6 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = 0$$

$$\frac{\chi_{1}}{20-14} = \frac{\chi_{2}}{-49+55} = \frac{\chi_{3}}{-22+28} \Rightarrow \frac{\chi_{1}}{6} = \frac{\chi_{2}}{6} \Rightarrow \frac{\chi_{1}}{1} = \frac{\chi_{2}}{1} = \frac{\chi_{3}}{1}$$

$$\frac{\lambda=1}{7} \begin{pmatrix} 10 & -4 & -7 \\ 7 & -3 & -5 \\ 10 & -4 & -7 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = 0$$

$$\begin{aligned} &\log_{1}-\lambda x_{2}-7x_{3}=0 & x_{1} & x_{2} & x_{3} \\ &7x_{1}-3x_{2}-7x_{3}=0 & -3 & -n & 7 & -3 \\ &10x_{1}-\lambda x_{2}-7x_{3}=0 & -3 & -n & 7 & -3 \\ &\frac{x_{1}}{20-21} & \frac{x_{2}}{-47+50} & \frac{x_{3}}{-50+28} & \xrightarrow{x_{1}} & \frac{x_{2}}{1} & \frac{x_{3}}{2} \\ & & & & & & & & & & & & \\ &\frac{x_{1}}{20-21} & \frac{x_{2}}{-47+50} & -\frac{x_{3}}{-50+28} & \xrightarrow{x_{1}} & \frac{x_{2}}{1} & \frac{x_{3}}{-2} \\ & & & & & & & & & & & \\ &\frac{x_{1}}{20-21} & \frac{x_{2}}{-47+450} & -\frac{x_{3}}{-36+28} & \xrightarrow{x_{1}} & \frac{x_{2}}{-4} & \frac{x_{3}}{-8} & \xrightarrow{x_{1}} & \frac{x_{2}}{-4} & \frac{x_{3}}{-8} \\ & & & & & & & & & \\ &\frac{x_{1}}{20-28} & \frac{x_{2}}{-47+450} & -\frac{x_{3}}{-36+28} & \xrightarrow{x_{1}} & \frac{x_{2}}{-8} & \frac{x_{3}}{-8} & \xrightarrow{x_{1}} & \frac{x_{2}}{-8} & \xrightarrow{x_{1}} & \frac{x_{2}}{2} \\ & & & & & & & & \\ &\frac{x_{1}}{20-28} & \frac{x_{2}}{-47+450} & -\frac{x_{3}}{-36+28} & \xrightarrow{x_{1}} & \frac{x_{2}}{-8} & \xrightarrow{x_{3}} & \xrightarrow{x_{1}} & \frac{x_{2}}{2} & \frac{x_{3}}{-8} \\ & & & & & & & & \\ &\frac{x_{1}}{20-28} & \frac{x_{2}}{-47+450} & -\frac{x_{3}}{-36+28} & \xrightarrow{x_{1}} & \frac{x_{2}}{-8} & \xrightarrow{x_{3}} & \xrightarrow{x_{1}} & \frac{x_{3}}{2} & \xrightarrow{x_{1}} & \frac{x_{3}}{2} \\ & & & & & & & \\ &\frac{x_{1}}{20-28} & \frac{x_{2}}{-47+450} & -\frac{x_{3}}{-36+28} & \xrightarrow{x_{1}} & \frac{x_{3}}{-8} & \xrightarrow{x_{1}} & \frac{x_{3}}{-8} & \xrightarrow{x_{1}} & \frac{x_{3}}{2} \\ & & & & & & & \\ &\frac{x_{1}}{20-28} & \frac{x_{2}}{-47+450} & -\frac{x_{3}}{-36+28} & \xrightarrow{x_{1}} & \frac{x_{3}}{-8} & \xrightarrow{x_{1}} & \frac{x_{3}}{2} \\ & & & & & & & \\ &\frac{x_{1}}{20-28} & \frac{x_{2}}{-47+450} & -\frac{x_{3}}{-8} & \xrightarrow{x_{1}} & \frac{x_{3}}{-8} & \xrightarrow{x_{1}} & \frac{x_{3}}{2} \\ & & & & & & & \\ &\frac{x_{1}}{20-28} & \frac{x_{2}}{-47+450} & -\frac{x_{3}}{-47+450} & \xrightarrow{x_{3}} & \frac{x_{3}}{2} \\ & & & & & & & \\ &\frac{x_{1}}{20-28} & \frac{x_{2}}{-47+450} & -\frac{x_{3}}{-47+450} & \xrightarrow{x_{3}} & \frac{x_{3}}{-47+450} \\ & & & & & & & \\ &\frac{x_{1}}{20-28} & \frac{x_{2}}{20-28} & \frac{x_{3}}{20-28} & \xrightarrow{x_{3}} & \frac{x_{3}}{20-28} \\ & & & & & & & \\ &\frac{x_{1}}{20-28} & \frac{x_{2}}{20-28} & \frac{x_{3}}{20-28} & \xrightarrow{x_{3}} & \frac{x_{3}}{20-28} \\ &\frac{x_{1}}{20-28} & \frac{x_{2}}{20-28} & \frac{x_{3}}{20-28} & \xrightarrow{x_{3}} & \frac{x_{3}}{20-28} \\ &\frac{x_{1}}{20-28} & \frac{x_{2}}{20-28} & \frac{x_{3}}{20-28} & \frac{x_{3}}{20-28} & \xrightarrow{x_{3}} & \frac{x_{3}}{20-28} \\ &\frac{x_{1}}{20-28} & \frac{x_{2}}{20-2$$

Scanned by CamScanner

Eigenvectors:
$$(A-\lambda 1) \times = 0$$

$$\begin{array}{cccc}
-2-\lambda & 2 & -3 \\
2 & 1-\lambda & -6 \\
-1 & -2 & -\lambda
\end{array}$$
 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$

$$\begin{array}{cccc}
\underline{\chi = -3} & \begin{pmatrix} 1 & 2 & -3 \\ 2 & 4 & -b \\ -1 & -2 & 3 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = 0$$

$$x_1 + 2x_2 - 3x_3 = 0$$

 $2x_1 + 4x_2 - 6x_3 = 0$

$$-x_{1}-2x_{2}+3x_{3}=0$$

Put
$$x_1 = 0 \Rightarrow 2x_2 - 3x_3 = 0 \Rightarrow 2x_2 = 3x_3 \Rightarrow \frac{x_2}{3} = \frac{x_3}{2}$$

$$\therefore \times_1 = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}$$

Put
$$x_2 = 0 \implies x_1 - 3x_3 = 0 \implies x_1 = 3x_3 \implies \frac{x_1}{3} = \frac{x_3}{1}$$

$$-x_{1}-2x_{2}-5x_{3}=0$$

$$\frac{\chi_{1}}{20-12} = \frac{\chi_{2}}{6+10} = \frac{\chi_{3}}{-4-4} \Rightarrow \frac{\chi_{1}}{8} = \frac{\chi_{2}}{16} = \frac{\chi_{3}}{-8} \Rightarrow \frac{\chi_{1}}{21} = \frac{\chi_{2}}{2} = \frac{\chi_{3}}{-1}$$

$$\therefore \times_3 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

(3) Find the eigenvalues & eigenvectors of the matrix
$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
 [N/D-2015] $\frac{50!}{10!}$ Let $A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$

Characteristic equation:
$$\lambda^3 - 5, \lambda^2 + 5_2 \lambda - 5_3 = 0$$

$$\begin{aligned} &= \begin{vmatrix} 2 & 0 & | + \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = (A - 0) + (A - 1) + (A - 0) = A + 3 + 4 = 11 \\ & 3_3 = |A| = 2 (A - 0) - 0 (0 - 0) + 1 (0 - 1) = 8 - 2 = 6 \\ & \text{Hence the characleristic expection is } & \frac{\lambda^3 - 6\lambda^2 + 11\lambda - 6 = 0}{\lambda^3 - 6\lambda^2 + 11\lambda - 6 = 0} \\ & & \lambda = 1 \begin{vmatrix} 1 & -6 & 11 & -6 & 1 \\ -5 & 6 & 10 & 1 \\ -5 & 6 & 10 & 1 \end{vmatrix} \\ & & \lambda^2 - 5 + \lambda + 6 = 0 \\ & & (\lambda - 3)(\lambda - 2) = 0 \\$$

$$\frac{x_1}{o+1} = \frac{x_2}{o-o} = \frac{x_3}{1-o} \Rightarrow \frac{x_1}{1} = \frac{x_2}{o} = \frac{x_3}{1}$$

$$\therefore x_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Find the eigenvalues & eigenvectors of the matrix
$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$$

$$\frac{50!}{2} \text{ Let } A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$$

$$\frac{[A/M-2017]}{[N/D-2017]}$$

Characteristic equation: >3-5, x2+5, x-53=0

5,= Sum of the main diagonal elements = 6+3+3=12

32 = Sum of the ninors of main diagonal elements

$$= \begin{vmatrix} 3 & -1 \\ -1 & 3 \end{vmatrix} + \begin{vmatrix} 6 & 2 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 6 & -2 \\ -2 & 3 \end{vmatrix} = (9-1) + (18-4) + (18-4)$$

$$= 8 + 14 + 14 = 36$$

$$5_3 = |A| = 6(9 - 1) + 2(-6 + 2) + 2(2 - 6) = 6(8) + 2(-4) + 2(-4)$$

$$= 48 - 8 - 8 = 32$$

Hence the characteristic egn/. is \3-12\2+36\-32=0

$$(\lambda-8)(\lambda-2)=0 \Rightarrow \lambda=8,2$$

Hence the eigenvalues are 2,2,8.

Eigenvectors: (A-XI)x=0

$$\frac{1}{1}$$

$$\frac{6 - \lambda - 2}{2}$$

$$\frac{2}{2}$$

$$\frac{3 - \lambda - 1}{2}$$

$$\frac{2}{2}$$

$$\frac{3 - \lambda - 1}{3 - \lambda}$$

$$\frac{3}{2}$$

$$\frac{\lambda=2}{2} \begin{pmatrix} 4 & -2 & 2 \\ -2 & 1 & -1 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = 0 \qquad \begin{array}{c} 4\chi_1 - 2\chi_2 + 2\chi_3 = 0 \\ -2\chi_1 + \chi_2 - \chi_3 = 0 \\ 2\chi_1 - \chi_2 + \chi_3 = 0 \end{array}$$

Put
$$x_1 = 0 \Rightarrow -x_2 + x_3 = 0 \Rightarrow x_2 = x_3 \Rightarrow \frac{x_2}{1} = \frac{x_3}{1}$$

$$\therefore x_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$\frac{\lambda \cdot \beta}{2} = \frac{2}{-2} - \frac{2}{-5} - \frac{1}{-1}$$

$$\frac{x_1}{x_3} = 0 - \frac{2x_1 - 5x_3 - 3}{2x_1 - 5x_3 - 3} = 0 - \frac{2}{-7} - \frac{2}{-2} - \frac{2}{-7}$$

$$\frac{x_1}{2 + 10} = \frac{x_1}{-4} = \frac{x_1}{10 - 7} \Rightarrow \frac{x_1}{19} = \frac{x_2}{-6} = \frac{x_3}{6} \Rightarrow \frac{x_1}{2} = \frac{x_2}{-1} = \frac{x_3}{1}$$

$$\therefore x_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
To find the Third eigenvector orthogonal to $x_1 + x_2 = x_3 = x$

$$\lambda^{2}-6\lambda+5=0$$

$$(\lambda-3)(\lambda-2)=0 \Rightarrow \lambda=2,3$$

$$\therefore \lambda=1,2,3$$

Hence the eigenvalues are 1,2,3.

Eigenrectors: (A-X2)X=0

$$\begin{pmatrix} 2-\lambda & 2 & 1 \\ 1 & 3-\lambda & 1 \\ 1 & 2 & 2-\lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

$$\frac{\lambda=1}{1} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

Put
$$x_1=0 \Rightarrow 2x_2+x_3=0 \Rightarrow 2x_2=-x_3 \Rightarrow \frac{x_2}{-1}=\frac{x_3}{2}$$

$$\therefore x_1=\begin{pmatrix} 0\\ -1\\ 2 \end{pmatrix}$$

$$\frac{\lambda=2}{1} = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = 0 \qquad \chi_1 + 2\chi_2 + \chi_3 = 0 \\ \chi_1 + 2\chi_2 + 0\chi_3 = 0$$

$$0x_1 + 2x_2 + x_3 = 0$$

 $x_1 + x_2 + x_3 = 0$

$$\frac{\chi_1}{2-1} = \frac{\chi_2}{1-0} = \frac{\chi_3}{0-2} \Rightarrow \frac{\chi_1}{1} = \frac{\chi_2}{1} = \frac{\chi_3}{-2}$$

$$\therefore \times_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$\frac{\lambda=3}{1} \begin{pmatrix} -1 & 2 & 1 \\ 1 & 0 & 1 \\ 1 & 2 & -1 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = 0 \qquad \begin{array}{c} -\chi_1 + 2\chi_1 + \chi_3 = 0 \\ \chi_1 + 0\chi_2 + \chi_3 = 0 \\ \chi_1 + 2\chi_2 - \chi_3 = 0 \end{array}$$

$$\frac{\chi_{1}}{2-0} = \frac{\chi_{2}}{1+1} = \frac{\chi_{3}}{0-2} \implies \frac{\chi_{1}}{2} = \frac{\chi_{2}}{2} = \frac{\chi_{3}}{-2} \implies \frac{\chi_{1}}{1} = \frac{\chi_{2}}{1} = \frac{\chi_{3}}{1} = \frac{\chi_{3}$$

Couley - Hamilton theorem:

Every square matrix satisfies its own characteristic equation.

Uses of Coyley- Hamilton theorem:

To calculate (i) the positive integral powers of A& (ii) the inverse of a non-singular square matrix A.

(b) Verify Cayley-Hamilton thm/. for the matrix
$$A = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$
. Hence using it find $A^{-1} = A^{-1}$. [N/D-2014] [A/M-2017] [M/J-2013] [M/J-2010]

Sol: Given $A = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$.

Therefore the matrix
$$A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{bmatrix}$$
. Hence using if find A^{-1} .

Sol: Griven $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{bmatrix}$

Characleristic egnl:
$$\lambda^3 - 5, \lambda^2 + 5_2 \lambda - 3_3 = 0$$

$$5_1 = 5_{\text{um}} \text{ of the main diagonal elements} = 1+5-5 = 1$$

$$5_2 = 5_{\text{um}} \text{ of the ninors of main diagonal elements}$$

$$= \begin{vmatrix} 5 - 4 \\ 7 - 5 \end{vmatrix} + \begin{vmatrix} 1 - 2 \\ 3 - 5 \end{vmatrix} + \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = (-25 + 28) + (-5 + 6) + (5 - 4)$$

$$= 3+1+1=5$$

$$5_3 = |A| = 1(-25+28)-2(-10+12)-2(14-15) = 1(3)-2(2)-2(-1)$$

$$= 3-4+2=1$$

Hence the characteristic egn/. is $\lambda^3 - \lambda^2 + 5\lambda - 1 = 0$ Verification: By C-H thm/, every square matrix satisfies its own characteristic egn/. ... $A^3 - A^2 + 5A - \hat{1} = 0$

$$A^{2} = \begin{pmatrix} -1 & -2 & 0 \\ 0 & 1 & -4 \\ 2 & b & -9 \end{pmatrix} \qquad A^{3} = \begin{pmatrix} -5 & -12 & 10 \\ -10 & -23 & 1b \\ -13 & -29 & 17 \end{pmatrix}$$

$$\begin{array}{c} \textcircled{\bigcirc} \Rightarrow A^{\frac{3}{2}} - A^{\frac{3}{2}} + 5A - \overset{?}{2} = 0 \\ \Rightarrow A^{\frac{3}{2}} - A + 5\overset{?}{1} = 0 \\ = -1 - 2 - 0 \\ = 2 - 6 - 9 \\ = -9 - 2 - 5 - 7 \\ \Rightarrow 7 - 5 \\ \Rightarrow -9 - 9 \\ \Rightarrow -9 - 9 - 9$$

$$\begin{array}{l}
\text{(1)} \Rightarrow A^{3} - 4A^{2} - 20A - 35\hat{1} = 0 \Rightarrow A^{2} - 4A - 20\hat{1} - 35\hat{A}^{-1} = 0 \\
\Rightarrow 35\hat{A}^{-1} = A^{2} - 4A - 20\hat{1} \Rightarrow A^{-1} = \frac{1}{35}(A^{2} - 4A - 20\hat{1}) \\
\therefore A^{2} - 4A - 20\hat{1} = \begin{pmatrix} 20 & 23 & 23 \\ 15 & 22 & 37 \\ 10 & 9 & 14 \end{pmatrix} - 4\begin{pmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix} - 20\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
= \begin{pmatrix} 20 & 23 & 23 \\ 15 & 22 & 37 \\ 10 & 9 & 14 \end{pmatrix} - \begin{pmatrix} 4 & 12 & 28 \\ 16 & 8 & 12 \\ 4 & 8 & 4 \end{pmatrix} - \begin{pmatrix} 20 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 20 \end{pmatrix} = \begin{pmatrix} -4 & 11 & -5 \\ -1 & -6 & 25 \\ 6 & 1 & -10 \end{pmatrix} \\
\therefore A^{-1} = \frac{1}{357}\begin{pmatrix} -4 & 11 & -5 \\ -1 & -6 & 25 \\ 6 & 1 & -10 \end{pmatrix}$$

9 Verify Cayley-Hamilton thmy for
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix}$$
. Hence using it find $A^{-1} + A^{4}$.

Sol: Griven $A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix}$ [Jan-2011]

Characteristic egn/: 2-5, 2+5, 2-53=0 5, = Sum of the main diagonal elements = 1+1+3=5 32 = Sum of the minors of main diagonal elements $= \begin{vmatrix} 1 & 0 \\ 0 & 3 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = (3-0) + (3-2) + (1-0) = 3+1+1 = 5$

 $3_3 = |A| = 1(3-0)+1(0-0)+1(0-2) = 3-2=1$

Hence the characteristic egnl. is >3-62+52-1=0. By C-H thm/., every square matrix satisfies its own characteristic equ/. : A3-5A2+5A-1=0. -0

Verification:

$$A^{2} = \begin{pmatrix} 3 & -2 & 4 \\ 0 & 1 & 0 \\ 8 & -2 & 11 \end{pmatrix}, A^{3} = \begin{pmatrix} 11 & -5 & 15 \\ 0 & 1 & 0 \\ 30 & -10 & 41 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & -5 & 15 \\ 0 & 1 & 0 \\ 30 & -10 & 41 \end{pmatrix} - 5 \begin{pmatrix} 3 & -2 & 4 \\ 0 & 1 & 0 \\ 8 & -2 & 11 \end{pmatrix} + 5 \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 11 & -15 & 15 \\ 0 & 1 & 0 \\ 30 & -10 & 41 \end{pmatrix} - \begin{pmatrix} 15 & -10 & 20 \\ 0 & 5 & 0 \\ 40 & -10 & 55 \end{pmatrix} + \begin{pmatrix} 5 & -5 & 5 \\ 0 & 5 & 0 \\ 10 & 0 & 15 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Hence Cayley- Hamilton thml. verified.

$$A^{-1} = \frac{1}{5} \begin{bmatrix} \begin{pmatrix} -b & -7 & -b \\ -7 & -9 & -7 \\ -b & -7 & -11 \end{pmatrix} + \begin{pmatrix} b & 12 & b \\ 12 & 12 & b \\ b & b & 18 \end{pmatrix} + \begin{pmatrix} -5 & 0 & 0 \\ 0 & -5 & 0 \\ \hline 0 & 0 & -5 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{5} \begin{pmatrix} -5 & 5 & 0 \\ 5 & -2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

(1) Use C-H thm/. to find the value of the matrix given by
$$A^{8}-5A^{7}+7A^{6}-3A^{5}+A^{4}-5A^{3}+8A^{2}-2A+2$$
, if the matrix $A=\begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$
[M/J-2009]

Characteristic eqn/.: $\lambda^3 - 5, \lambda^2 + 5, \lambda - 5, \delta = 0$ $5_1 = 5$ um of the main diagonal elements = 2 + 1 + 2 = 5 $5_2 = 5$ um of the minors of main diagonal elements $= \begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = (2 - 0) + (4 - 1) + (2 - 0) = 2 + 3 + 2 = 7$

 $3_3 = |A| = 2(2-0) - 1(0-0) + 1(0-1) = 4 - 1 = 3$ Hence the characteristic eqn). is $\lambda^3 - 5\lambda^2 + 7\lambda - 3 = 0$ Using C-H thmy. we get, $A^3 - 5A^2 + 7A - 32 = 0$

 $A^{3}-5A^{2}+7A-32$ $A^{8}-5A^{7}+7A^{6}-3A^{5}+A^{4}-5A^{3}+8A^{2}-2A+2$ $A^{8}-5A^{7}+7A^{6}-3A^{5}$ (-)(+)(-)(+) $A^{4}-5A^{3}+8A^{2}-2A$ $A^{4}-5A^{3}+7A^{2}-3A$ (-)(+)(-)(+) $A^{2}+A+2$

$$A^{8} - 5A^{7} + 7A^{6} - 3A^{7} + A^{4} - 5A^{3} + 8A^{2} - 2A + 1 = (A^{3} - 5A^{2} + 7A - 31)(A^{5} + A) + A^{2} + A + 1 = (6)($$

12 Find An using C-H thmy., taking A = (14). Hence find 13. 301: (niven A= (1 4) Characteristic egyl: 2-5, x+32=0 5,= Sum of the main diagonal elements = 1+3=4 32= 12 = 3-8=-5 Hence the characteristic egn). is x-4x-5=0 Using C-H thm). we get, A2-4A-51=0. An= (A2-4A-5) Q(A) + aA+b2 where Q(A) is the quotient a aA+b2 is the : An = (0) Q(A)+aA+b2 (: by 0) An=aA+bî => xn=ax+b -2 Eigmvalues: 12-41-5=0 +1 -5 Subs/. X=-1 & 5 in 1 , [-1) = a(-1)+b=>(-1) =-a+b-3 5" = a(5)+b => 5" = 5a+b -4 Subs). a value in 3, (-1)"= -1/5"-(-1)"]+b => b=(-1)^n+\frac{1}{b}[5^n-(-1)^n]=\frac{b(-1)^n+5^n-(-1)^n}{1}=\frac{5^n(-1)^n+5^n}{1} : b= 1 [5(-1)"+5"] $A^{n} = \frac{1}{6} \left[5^{n} - (-1)^{n} \right] A + \frac{1}{6} \left[5^{n} (-1)^{n} + 5^{n} \right]$ A3= + [53-(-1)3] A++ [5(-1)3+53] 2 $= \frac{1}{6} \left[125 + 1 \right] A + \frac{1}{6} \left[-5 + 125 \right] \hat{1} = \frac{126}{4} A + \frac{120}{4} \hat{1}$ $= 21A + 201 = 21 \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} + 20 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 21 & 84 \\ 42 & 63 \end{pmatrix} + \begin{pmatrix} 20 & 0 \\ 0 & 20 \end{pmatrix} = \begin{pmatrix} 41 & 84 \\ 42 & 83 \end{pmatrix}$

(3) Reduce the matrix
$$\begin{pmatrix} 10 & -2 & -37 \\ -2 & 2 & 3 \\ -9 & 3 & 97 \end{pmatrix}$$
 to diagonal form. $[A/N-2017]$

Let $A = \begin{pmatrix} 10 & -2 & -57 \\ -2 & 2 & 3 \\ -5 & 3 & 97 \end{pmatrix}$

Characterialic expl.: $\lambda^3 - 5, \lambda^4 + 5_2 \lambda - 5_3 = 0$
 $S_1 = S_{MN}$ of the minor of main diagonal elements

$$= \begin{pmatrix} 2 & 3 \\ 3 & 1 \\ 1 & 1 & 1 & 1 \\ -9 & 5 \\ 1 & 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 10 & -2 \\ 10 & -57 \\ 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 10 & -2 \\ -19 & 57 \\ 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 10 & -2 \\ -19 & 57 \\ 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 10 & -2 \\ -19 & 57 \\ 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 10 & -2 \\ -19 & 57 \\ 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 10 & -2 \\ -19 & 57 \\ 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 10 & -2 \\ -19 & 57 \\ 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 10 & -2 \\ -19 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 10 & -2 \\ -19 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 10 & -2 \\ -19 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 10 & -2 \\ -19 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 10 & 2 \\ -19 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 10 & 2 \\ -19 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 10 & 2 \\ -19 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 10 & 2 \\ -19 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 10 & 2 \\ -19 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 10 & 2 \\ -19 & 3 & 5 \end{pmatrix} + \begin{pmatrix} 10 & 2 \\ -19 & 3 & 5 \end{pmatrix} + \begin{pmatrix} 10 & 2 \\ -19 & 3 & 5 \end{pmatrix} + \begin{pmatrix} 10 & 2 \\ -19 & 3 & 5 \end{pmatrix} + \begin{pmatrix} 10 & 2 \\ -19 & 3 & 5 \end{pmatrix} + \begin{pmatrix} 10 & 2 & -1 \\ -19 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & -1 \\ -19 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & -1 \\ -19 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & -1 \\ -19 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & -1 \\ -19 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & -1 \\ -19 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -19 & 3 & 5 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -19 & 3 & 5 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -19 & 3 & 5 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -19 & 3 & 5 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -19 & 3 & 5 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -19 & 3 & 5 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -19 & 3 & 2 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -19 & 3 & 2 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -2 & 1 & 3 & 3 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -2 & 2 & 3 & 3 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -2 & 2 & 3 & 3 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -2 & 3 & 2 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -2 & 3 & 2 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -2 & 3 & 2 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -2 & 3 & 2 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -2 & 3 & 2 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -2 & 3 & 2 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -2 & 3 & 2 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -2 & 3 & 3 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -2 & 3 & 3 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -2 & 3 & 3 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -2 & 3 & 3 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -2 & 3 & 3 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 2 & 2 & 3 \\ -2$$

$$\begin{array}{c} \frac{\lambda_{-} | h_{1}}{-2} & -\frac{\lambda_{1}}{-2} & -\frac{\lambda_{2}}{-3} \\ -\frac{\lambda_{2}}{-2} & -\frac{\lambda_{2}}{-12} & \frac{\lambda_{3}}{-3} \\ -\frac{\lambda_{2}}{-7} & \frac{\lambda_{3}}{-3} & -\frac{\lambda_{2}}{-9} & -\frac{\lambda_{1}}{-2} & -\frac{\lambda_{2}}{-2} & -\frac{\lambda_{3}}{-2} \\ -\frac{\lambda_{1}}{-6-60} & \frac{\lambda_{1}}{-6+12} & \frac{\lambda_{3}}{48-4} & \Rightarrow \frac{\lambda_{1}}{-66} & -\frac{\lambda_{2}}{22} & \frac{\lambda_{3}}{44} & \Rightarrow \frac{\lambda_{1}}{-6} & \frac{\lambda_{2}}{2} & \frac{\lambda_{3}}{44} \\ & \Rightarrow \frac{\lambda_{1}}{-3} & = \frac{\lambda_{2}}{1} & = \frac{\lambda_{3}}{2} & \cdots & \lambda_{3} & = \begin{pmatrix} -\frac{3}{1} \\ \frac{1}{2} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{2} & = \begin{pmatrix} 1 & -5 & 4 \end{pmatrix} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} & = 1-57+4 & = 0 \\ \chi_{1}^{\top} \chi_{3} & = \begin{pmatrix} 1 & -17 & 4 \end{pmatrix} \begin{pmatrix} -\frac{3}{1} \\ \frac{1}{2} \end{pmatrix} & = -3-57+8 & = 0 \\ \frac{1}{2} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{3} & = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{1} \\ -\frac{3}{1} \end{pmatrix} & = -3+1+2 & = 0 \\ \frac{1}{2} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{3} & = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{1} \\ -\frac{3}{1} \end{pmatrix} & = -3+1+2 & = 0 \\ \chi_{1}^{\top} \chi_{3} & \frac{1}{1} \chi_{1} & \frac{1}{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{2} & \frac{1}{1} \chi_{3} & \frac{1}{1} \chi_{1} \\ \chi_{1}^{\top} \chi_{3} & \frac{1}{1} \chi_{1} & \frac{1}{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{2} & \frac{1}{1} \chi_{3} & \frac{1}{1} \chi_{1} \\ \chi_{1}^{\top} \chi_{3} & \frac{1}{1} \chi_{1} & \frac{1}{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{2} & \frac{1}{1} \chi_{3} & \frac{1}{1} \chi_{1} \\ \chi_{3} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{1} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \\ \chi_{3} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{1} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \\ \chi_{3} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{1} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{1} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{1} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{1} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{1} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{1} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{1} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{1} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{1} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{1} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{1} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{1} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \end{pmatrix} \\ \chi_{2}^{\top} \chi_{1} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{1} & \frac{1}{1} \chi_{1} & \frac{1}{1} \chi_{1} \end{pmatrix} \\ \chi_{1}^{\top} \chi_{1} & \frac{1}{1} \chi$$

Diagonalize the matrix
$$A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{pmatrix}$$

Characteristic egat: $\lambda^3 - 5, \lambda^3 + 5, \lambda^3 - 5, \lambda^3 - 5, \lambda^3 - 5, \lambda^3 + 5, \lambda^3 - 5, \lambda^3 - 5, \lambda^3 + 5, \lambda^3 - 5, \lambda^$

 $\Rightarrow \quad \times_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$

1st
$$x_3 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 $x_1^T x_3 = \begin{pmatrix} -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = -x_1 + 0x_2 + x_3$
 $x_1^T x_3 = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0x_1 + x_2 + 0x_3$
 $x_1^T x_3 = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0x_1 + x_2 + 0x_3$
 $x_1^T x_3 = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0x_1 + x_2 + 0x_3$
 $x_1^T x_3 = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ y_2 \\ y_3 \end{pmatrix} = 0$
 $x_1^T x_3 = \begin{pmatrix} -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ y_1 \\ y_2 \end{pmatrix} = 0$
 $x_1^T x_3 = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ y_1 \\ y_2 \end{pmatrix} = 0$
 $x_1^T x_3 = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ y_1 \\ y_2 \end{pmatrix} = 0$

Hence the eigenvectors are orthogonal to each other.

 $N = \begin{pmatrix} -1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}$
 $x_1^T x_3 = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix} = \begin{pmatrix} -1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}$
 $x_1^T x_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $x_1^T x_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $x_1^T x_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2$

(15) Reduce the quadratic form
$$3x^2+5y^2+3z^2-2yz+2zx-2xy$$
 to the canonical form through orthogonal transformation. [N/D-2014] [Jan-2011]

Sol: Given: Quadratic form $3x^2+5y^2+3z^2-2yz+2zx-2xy$

[M/J-2013]

 $A = \begin{cases} \cos \frac{1}{4} \cdot x^2 & \frac{1}{2} \cos \frac{1}{4} \cdot xy & \frac{1}{2} \cos \frac{1}{4} \cdot xz \\ \frac{1}{2} \cos \frac{1}{4} \cdot xy & \cos \frac{1}{4} \cdot y^2 & \frac{1}{2} \cos \frac{1}{4} \cdot xz \end{cases} = \begin{pmatrix} 3 & -2/2 & 2/2 \\ -2/2 & 5 & -2/2 \\ \frac{1}{2} & -2/2 & 3 \end{pmatrix}$

Levelli-xz $\frac{1}{2} \cos \frac{1}{4} \cdot y^2 & \cos \frac{1}{4} \cdot z^2 \end{pmatrix} = \begin{pmatrix} 3 & -2/2 & 2/2 \\ -2/2 & 5 & -2/2 \\ \frac{1}{2} & -2/2 & 3 \end{pmatrix}$

Characteristic equ:
$$\lambda^2 - 3$$
, $\lambda^2 + 5$, $\lambda^2 + 5$, $\lambda^2 - 5$, $\lambda^2 = 0$
 $5 = 5$ and of the main diagonal elements $= 3 + 5 + 3 = 11$
 $5 = 5$ and of the minors of main diagonal elements

 $= \begin{vmatrix} 5 & -1 \\ -1 & 3 \end{vmatrix} + \begin{vmatrix} 3 & 1 \\ 1 & 3 \end{vmatrix} + \begin{vmatrix} 3 & -1 \\ -1 & 5 \end{vmatrix} = (15 - 1) + (9 - 1) + (15 - 1) = 14 + 8 + 14 = 36$
 $= \begin{vmatrix} 5 & -1 \\ -1 & 3 \end{vmatrix} + \begin{vmatrix} 3 & 1 \\ 1 & 3 \end{vmatrix} + \begin{vmatrix} 3 & -1 \\ -1 & 5 \end{vmatrix} = (15 - 1) + (1 - 4) = 42 - 2 - 4 = 36$
 $= \begin{vmatrix} 5 & -1 \\ -1 & 3 \end{vmatrix} + \begin{vmatrix} 3 & -1 \\ 1 & 5 \end{vmatrix} = 3(14) + 1(-2) + 1(-4) = 42 - 2 - 4 = 36$

Hence the characteristic equ. is $\lambda^3 - 11\lambda^2 + 36\lambda - 36 = 0$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 36 & -36 \\ 1 & -9 & 18 & 0 \end{vmatrix}$
 $\lambda^2 - 9\lambda + 18 = 0$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 36 & -36 \\ 1 & -9 & 18 & 0 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 36 & -36 \\ 1 & -9 & 18 & 0 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 36 & -36 \\ 1 & -9 & 18 & 0 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 36 & -36 \\ 1 & -9 & 18 & 0 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 36 & -36 \\ 1 & -9 & 18 & 0 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 36 & -36 \\ 1 & -9 & 18 & 0 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 36 & -36 \\ 1 & -9 & 18 & 0 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 36 & -36 \\ 1 & -9 & 18 & 0 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 36 & -36 \\ 1 & -9 & 18 & 0 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 36 & -36 \\ 1 & -9 & 18 & 0 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 36 & -36 \\ 1 & -9 & 18 & 0 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 36 & -36 \\ 1 & -9 & 18 & 0 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 36 & -36 \\ 1 & -9 & 18 & 0 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 36 & -36 \\ 1 & -9 & 18 & 0 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 36 & -36 \\ 1 & -9 & 18 & 0 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 1 & 3 \\ -1 & 5 & -1 & 1 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 1 & 3 \\ -1 & 3 & -1 & 1 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 1 & 3 \\ -1 & 3 & -1 & 1 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 1 & 3 \\ -1 & 3 & -1 & 1 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 1 & 3 \\ -1 & 3 & -1 & 1 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 1 & 3 \\ -1 & 3 & -1 & 1 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 1 & 3 \\ -1 & 3 & -1 & 1 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 1 & 3 \\ -1 & 3 & -1 & 1 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 1 & 3 \\ -1 & 3 & -1 & 1 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 1 & 3 \\ -1 & 3 & -1 & 1 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 1 & 3 \\ -1 & 3 & -1 & 1 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 1 & 3 \\ -1 & 3 & -1 & 1 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 1 & 3 \\ -1 & 3 & -1 & 1 \end{vmatrix}$
 $\lambda = 2 \begin{vmatrix} 1 & -11 & 1 & 3 \\ -1 & 3 & -1 & 1 \end{vmatrix}$

Hance the eigenvalues are 2,3 & 6.

Eigenvectors:
$$\begin{pmatrix}
3-\lambda & -1 & 1 \\
-1 & 5-\lambda & -1 \\
1 & -1 & 3-\lambda
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x_1 \\
x_2 \\$$

$$\frac{\lambda=6}{1-1-1-1} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \quad -3x_1 - x_2 + x_3 = 0 \quad -1 \quad 1 \quad -3 \quad -1 \\ 1 \quad -1 \quad -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \quad -x_1 - x_2 - x_3 = 0 \quad -1 \quad -1 \quad -1 \quad -1 \\ x_1 - x_2 - 3x_3 = 0 \end{pmatrix} = 0 \quad \frac{x_1}{1+1} = \frac{x_2}{-1-3} = \frac{x_3}{3-1} \Rightarrow \frac{x_1}{2} = \frac{x_2}{-1} = \frac{x_3}{2} \Rightarrow \frac{x_1}{1} = \frac{x_2}{-2} = \frac{x_3}{1}$$

$$\therefore x_3 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

$$\therefore x_3 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

$$X_{1}^{T}X_{2} = \begin{pmatrix} -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = -1 + 0 + 1 = 0$$

$$X_{2}^{T}X_{3} = \begin{pmatrix} -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 \\ -2 \\ 1 \end{pmatrix} = -1 + 0 + 1 = 0$$

$$X_{2}^{T}X_{3} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} = 1 - 2 + 1 = 0$$

Hence the eigenvectors are orthogonal to each other.

$$N = \begin{pmatrix} -1/2 & 1/3 & 1/6 \\ 0 & 1/3 & -2/1/6 \\ 1/2 & 1/3 & 1/6 \end{pmatrix}, \qquad N^{T} = \begin{pmatrix} -1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/6 & -2/1/6 & 1/6 \end{pmatrix}$$

$$AN = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 77 & -1 \\ 1 & -1 & 3 \end{pmatrix} \begin{pmatrix} -1/2 & 1/3 & 1/6 \\ 0 & 1/3 & -2/16 \\ 1/2 & 1/3 & 1/6 \end{pmatrix} = \begin{pmatrix} -2/12 & 3/13 & 6/16 \\ 0 & 3/13 & -12/16 \\ 2/12 & 3/13 & 6/16 \end{pmatrix}$$

$$D = N^{T}AN = \begin{bmatrix} -1/2 & 0 & 1/2 \\ 1/3 & 1/8 & 1/3 \\ 1/6 & -2/6 & 1/6 \end{bmatrix} \begin{bmatrix} -2/2 & 3/3 & 6/6 \\ 0 & 3/2 & -12/6 \\ 2/2 & 3/3 & 6/6 \end{bmatrix} = \begin{bmatrix} 4/2 & 0 & 0 \\ 0 & 2/3 & 0 \\ 0 & 0 & 36/6 \end{bmatrix}$$

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

(16) Reduce the quadratic form
$$2x^2+5y^2+3z^2+4xy$$
 to a canonical form through an orthogonal transformation. Find also its nature. [AIM 2018]

[M/J-2010]

Sol: Given: Quadratic form $2x^2+5y^2+3z^2+4xy$ [Jan-2012]

$$A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Characteristic eggl:
$$\lambda^2 - 5, \lambda^2 + 5_2 \lambda - 5_3 = 0$$
 $5, = 5$ and of the main diagonal elements

$$= \begin{vmatrix} 5 & 0 \\ 0 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 0 \\ 0 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 2 \\ 0 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 2 \\ 2 & 5 \end{vmatrix} = (15-0) + (6-0) + (10-4) = 15 + 6 + 6 = 27$$
 $5, = 1 + 1 = 2 \cdot (15-0) - 2 \cdot (6-0) + 0 \cdot (0-0) = 30 - 12 = 18$

Hence the characteristic eggl: is $\lambda^3 - 10\lambda^2 + 27\lambda - 18 = 0$

$$\lambda^2 - 1 + 18 = 0$$

$$X_{1}^{T}X_{2} = (2-1) \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 , \quad X_{1}^{T}X_{3} = (e-1) \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2-2+0=0$$

$$X_{2}^{T}X_{3} = (o-1) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0$$
Hence the eigenvectors are orthogonal to each other.

$$N = \begin{pmatrix} 2\sqrt{5} & 0 & \sqrt{5} \\ -\sqrt{5} & 0 & \sqrt{5} \\ 0 & -1 \end{pmatrix}, \quad NT = \begin{pmatrix} 2\sqrt{5} & -\sqrt{5} & 0 \\ 0 & 0 & -1 \\ \sqrt{5} & \sqrt{5} & 0 \end{pmatrix}$$

$$AN = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 2\sqrt{5} & 0 & \sqrt{5} \\ -\sqrt{5} & 0 & 2\sqrt{5} \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 2\sqrt{5} & -\sqrt{5} & 0 \\ -\sqrt{5} & 0 & 2\sqrt{5} \\ 0 & -3 & 0 \end{pmatrix}$$

$$D = N^{T}AN = \begin{pmatrix} 2\sqrt{5} & -\sqrt{5} & 0 \\ \sqrt{5} & 2\sqrt{5} & 0 \end{pmatrix} \begin{pmatrix} 2\sqrt{5} & 0 & 2\sqrt{5} \\ -\sqrt{5} & 0 & 2\sqrt{5} \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 2\sqrt{5} & -\sqrt{5} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$Canonical form:$$

$$(y_{1}, y_{2}, y_{3}) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 3/2 \\ 3/2 \end{pmatrix} = (3/3) \frac{3}{2} \log_{3} \log_{3} y_{2}^{2} + 3\sqrt{3} + 4\sqrt{3} + 3\sqrt{3} + 4\sqrt{3} + 4\sqrt{3$$

Hence the characteristic eqn 1. is $\lambda^3 - 12\lambda^2 + 36\lambda - 32 = 0$

Hence the eigenvalues are -2,3 & b.

$$\frac{1 - \lambda }{3} = \frac{1}{3} = \frac{1}{3}$$

$$\frac{\chi_{1}}{1-b} = \frac{\chi_{2}}{3+2} = \frac{\chi_{3}}{-4-1} \Rightarrow \frac{\chi_{1}}{-5} = \frac{\chi_{2}}{5} = \frac{\chi_{3}}{-5} \Rightarrow \frac{\chi_{1}}{-1} = \frac{\chi_{2}}{1} = \frac{\chi_{3}}{-1}$$

$$\therefore \chi_{2} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\therefore \times_2 = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$$

$$\frac{\lambda = b}{2} = \begin{pmatrix} -5 & 1 & 3 \\ 1 & -1 & 1 \\ 3 & 1 & -5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \qquad \begin{array}{c} -5x_1 + x_2 + 3x_3 = 0 \\ x_1 - x_2 + x_3 = 0 \\ 3x_1 + x_2 - 5x_3 = 0 \end{array} \qquad \begin{array}{c} x_1 \\ 1 & -1 \\ 3 & 1 - 5 \end{array}$$

$$\frac{x_1}{3} = \frac{x_2}{3} = \frac{x_3}{3} \Rightarrow \frac{x_1}{3} = \frac{x_2}{3} = \frac{x_3}{3} =$$

$$\frac{x_1}{1+3} = \frac{x_2}{3+5} = \frac{x_3}{5-1} \implies \frac{x_1}{4} = \frac{x_2}{8} = \frac{x_3}{4} \implies \frac{x_1}{1} = \frac{x_2}{2} = \frac{x_3}{1}$$

$$\therefore \times_{5} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

$$X_1^T X_2 = (-1 \ 0 \ 1) \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} = 1 + 0 - 1 = 0$$
, $X_1^T X_3 = (-1 \ 0 \ 1) \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = -1 + 0 + 1 = 0$

$$X_{2}^{T}X_{3} = (-1 \ 1 \ -1) \left(\frac{1}{2} \right) = -1 + 2 - 1 = 0$$

Hence the eigenvectors are orthogonal to each other.

$$N = \begin{pmatrix} -1/2 & -1/3 & 1/6 \\ 0 & 1/3 & 2/6 \\ 1/2 & -1/3 & 1/6 \end{pmatrix}$$

$$N^{T} = \begin{pmatrix} -1/2 & 0 & 1/2 \\ -1/3 & 1/2 & -1/3 \\ 1/6 & 2/6 & 1/6 \end{pmatrix}$$

$$N^{T} = \begin{pmatrix} -1/2 & 0 & 1/2 \\ -1/3 & 1/2 & -1/3 \\ 1/6 & 2/6 & 1/6 \end{pmatrix}$$

Scanned by CamScanner

$$AN = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1/2 & -1/3 & 1/6 \\ 0 & 1/3 & 1/46 \\ 1/2 & -1/3 & 1/6 \end{pmatrix} = \begin{pmatrix} 9/12 & -3/13 & 1/16 \\ 0 & 3/13 & 12/16 \\ -2/12 & -3/13 & 1/16 \end{pmatrix}$$

$$D = N^{T}AN = \begin{pmatrix} -1/2 & 0 & 1/2 \\ -1/3 & 1/3 & -1/3 \\ 1/6 & 2/16 & 1/6 \end{pmatrix} \begin{pmatrix} 2/12 & -3/13 & 1/16 \\ 0 & 3/13 & 12/16 \\ -2/12 & -3/13 & 1/16 \end{pmatrix} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

$$\begin{pmatrix} 2/16 & 1/6 & 1/6 \\ 2/16 & 1/6 & 1/6 \\ 0 & 0 & 6 \end{pmatrix} \begin{pmatrix} 3/1 & 12/16 \\ -2/12 & -3/13 & 1/16 \\ 0 & 0 & 6 \end{pmatrix}$$
Canonical form:
$$\begin{pmatrix} 3/1 & 3/2 & -3/13 & 1/16 \\ -2/12 & -3/13 & 1/16 \\ 0 & 0 & 6 \end{pmatrix}$$
Canonical form contains 2 tree terms & one -ye term. ... Quadratic for

Canonical form contains 2 +ve terms & one -ve term. .. Quadratic form is said to be indefinite.

Rank = No/. of non-zero terms in C.F = 3

(19) Reduce the quadratic form 2x+y+z+2xy-2xz-4yz to the canonical form. Hence find its nature, rank, index a signature. [AIM-2015] [NID-2010] Sol. Q.F: 2x2+y2+z2+2xy-2xz-4yz

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{pmatrix}$$

Characteristic egn/: \3-5, 2+32 \-33=0

S_= Sum of the main diagonal elements = 2+1+1=4

$$S_1 = S_{um}$$
 of the main diagonal elements
 $S_2 = S_{um}$ of the minors of main diagonal elements
 $= \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = (1-4) + (2-1) + (2-1) = -3 + 1 + 1 = -1$

$$3 = |A| = 2(1-4)-1(1-2)-1(-2+1) = -6+1+1=-4$$

Hence the characteristic equ), is >3-4>2->+4=0

Hence the eigenvalues are -1,1&4.

$$\begin{array}{c|cccc}
\hline
\begin{pmatrix}
2-\lambda & 1 & -1 \\
1 & 1-\lambda & -2 \\
-1 & -2 & 1-\lambda
\end{pmatrix}
\begin{pmatrix}
\chi_1 \\
\chi_2 \\
\chi_3
\end{pmatrix} = 0$$

$$\frac{X_{k-1}}{\begin{pmatrix} 3 & 1 & -1 \\ 1 & 2 & -2 \\ -1 & -2 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \quad x_1 + 2x_2 - 9x_3 = 0 \quad 2 \quad -2 \quad 1 \quad 2$$

$$\frac{x_1}{-x+2} = \frac{x_2}{-1+6} = \frac{x_3}{6-1} \Rightarrow \frac{x_1}{o} = \frac{x_2}{5} = \frac{x_3}{5} \Rightarrow \frac{x_1}{o} = \frac{x_2}{1} = \frac{x_3}{1}$$

$$\therefore x_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \quad x_1 + 0x_2 - 2x_3 = 0 \quad 0 \quad -2 \quad 1 \quad 0$$

$$\frac{x_1}{-1+0} = \frac{x_1}{-1+2} = \frac{x_3}{o-1} \Rightarrow \frac{x_1}{x_2} = \frac{x_1}{1} = \frac{x_3}{1}$$

$$\therefore x_2 = \begin{pmatrix} -2 \\ 1 \\ -1 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \quad x_1 + 0x_2 - 2x_3 = 0 \quad 0 \quad -2 \quad 1 \quad 0$$

$$\frac{x_1}{-1+0} = \frac{x_1}{-1+2} = \frac{x_3}{o-1} \Rightarrow \frac{x_1}{-2} = \frac{x_1}{1} = \frac{x_3}{-1}$$

$$\therefore x_2 = \begin{pmatrix} -2 \\ 1 \\ -1 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \quad x_1 - 3x_2 - 2x_3 = 0 \quad 1 \quad -1 \quad -2 \quad 1 \quad 0$$

$$\frac{x_1}{-2+3} = \frac{x_1}{-1+2} = \frac{x_3}{6-1} \Rightarrow \frac{x_1}{-5} = \frac{x_1}{-5} = \frac{x_3}{5} \Rightarrow \frac{x_1}{-1} = \frac{x_2}{-1} = \frac{x_3}{1}$$

$$\therefore x_3 = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$

$$x_1^T x_2 = (o+1) \begin{pmatrix} -2 \\ -1 \\ -1 \end{pmatrix} = o+1-1=0 \quad x_1^T x_3 = (o+1) \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} = o-1+1=0$$

$$X_2^T x_3 = \begin{pmatrix} -2 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} = 2-1-1=0 \quad x_1^T x_3 = (o+1) \begin{pmatrix} -1 \\ -1 \end{pmatrix} = o-1+1=0$$

$$X_2^T x_3 = \begin{pmatrix} -2 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} -2 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} -2 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} -2 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} -2 \\ -2 \\ -1 \end{pmatrix} \begin{pmatrix} -2 \\ -1 \end{pmatrix} \begin{pmatrix} -2 \\ -2 \\ -1 \end{pmatrix} \begin{pmatrix} -2 \\ -2 \\ -1 \end{pmatrix} \begin{pmatrix} -2 \\ -2 \\ -2 \end{pmatrix} \begin{pmatrix} -2 \\ -2 \end{pmatrix} \begin{pmatrix} -2 \\ -2 \\ -2 \end{pmatrix} \begin{pmatrix} -2 \\$$

Canonical form contains 2 +ve termes & one -ve term .: Quadratic form is said to be indefinite. Rank = Nol. of non-zero terms in C.F = 3 Ender = Not. of tre terms in C.F = 2 Signature = (No), of tre larnes - No), of -re termes) in C.F = 2-1=1 20) Reduce the quadratic form x1+2x2+x3-2x,x2+2x2x3 to the canonical form through an orthogonal transformation, & hence show that is tre semi-definite. Also given a non-zero set of values (x1, x2, x3) which makes this quadratic form zero. [M/J-2009] Sol: Griven: Q.F x,+2x2+x3-2x,x2+2x2x3 $A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}$ Characteristic egnl: 23-3, 22+3, 1-53=0 $5_2 = \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} + \begin{vmatrix} 1 & -1 \\ -1 & 2 \end{vmatrix} = (2-1) + (1-0) + (2-1) = 1+1+1=3$ 33= |A|=1(2-1)+1(-1-0)+0(-1-0)=1-1=0 Hence the characteristic equl. is \3-42+3>=0 $\lambda \left(\lambda^2 - 4 \lambda + 3 \right) = 0$ 1=0, (x-1)(x-3)=0 Hence the eigenvalues are 0,1 & 3: Eigenvectors: (A-XI) X=0 $\begin{pmatrix}
1-\lambda & -1 & 0 \\
-1 & 2-\lambda & 1 \\
0 & 1 & 1-\lambda
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} = 0$ $\frac{\lambda=0}{-1} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = 0 \quad -\chi_1 + 2\chi_2 + \chi_3 = 0$ $0\chi_1 + \chi_2 + \chi_3 = 0$ $\cdot \cdot \times \cdot = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ $\frac{x_1}{-1-0} = \frac{x_2}{0-1} = \frac{x_3}{2-1} = \frac{x_1}{-1} = \frac{x_2}{-1} = \frac{x_3}{1}$

$$\frac{\lambda=1}{-1} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \quad \begin{cases} -x_1 + x_2 + x_3 = 0 \\ -x_1 + x_2 + x_3 = 0 \end{cases} = \begin{cases} -1 & -1 & 1 \\ 0 & 1 & -1 \end{cases} = \begin{cases} -2 & -1 & 0 \\ -1 & -1 & 1 \\ 0 & 1 & -2 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_2 \\ -1 & -1 & 1 \\ 0 & 1 & -2 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_2 \\ -1 & -1 & 1 \\ 0 & 1 & -2 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_2 \\ -1 & -1 & 1 \\ 0 & 1 & -2 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_2 \\ -1 & -1 & -1 \\ 0 & 1 & -2 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_2 \\ -1 & -1 & -1 \\ 0 & 1 & -2 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_2 \\ -1 & -1 & -1 \\ 0 & 1 & -1 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_2 \\ -1 & -1 & -1 \\ 0 & 1 & -1 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_2 \\ -1 & -1 & -1 \\ 0 & 1 & -1 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_2 \\ -1 & -1 & -1 \\ 0 & 1 & -1 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_2 \\ -1 & -1 & -1 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_2 \\ -1 & -1 & -1 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_2 \\ -1 & -1 & -1 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_2 \\ -1 & -1 & -1 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_2 \\ -1 & -1 & -1 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_2 \\ -1 & -1 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_1 \\ x_2 \\ -1 & -1 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_2 \\ -1 & -1 \end{cases} \Rightarrow \begin{cases} x_1 \\ x_1$$

Scanned by CamScanner

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1/3 & 1/2 & -1/6 \\ -1/3 & 0 & 2/6 \\ 1/3 & 1/2 & 1/6 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

$$x_1 = -1$$
, $x_2 = -1$, $x_3 = 1$

These values x1, x2, x3 make the Q.F. zero.

Vendication: x,=-1, x2=-1, x3=1 Q.F= x, +2x2+x3-2x, x2+2x2x3 =1+2+1-2-2=0

Properties:

Prove that the eigenvalues of a real symmetric matrix are real. [M/J-2014]

Proof: Let \(\) be an eigenvalue of the real symmetric matrix A. Let the

corresponding eigenvector be \(\). Let AT denote the transpose of A.

He have $Ax=\lambda X$

Pre-multiplying this egn/ by Ixn matrix XT, where the bar denotes the complex conjugate of xT, we get

$$\overline{X}^{T}AX = \lambda \overline{X}^{T}X - 0$$

Taking complex conjugate, we get

$$x^{T} \overline{A} \overline{x} = \overline{\lambda} x^{T} \overline{x}$$

Taking transpose on both sides, we get

$$T(\vec{x}^T \times \vec{\zeta}) = T(\vec{x} \wedge T \times \chi)$$

$$\bar{\mathbf{X}}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{X} = \bar{\mathbf{X}}^{\mathsf{T}} \mathbf{X}$$

From O& O, $\lambda \overline{x}^T x = \overline{\lambda} \ \overline{x}^T x \Rightarrow \lambda = \overline{\lambda}$. Hence λ is real

22) It à is an eigenvalue of a matrix A, thun \(\(\lambda \neq 0 \) is the eigenvalue of A-1.

Proof: Given \(\lambda \) is an eigenvalue of a matrix A. Let the corresponding [M/J-2012]

eigenvector be X. Then we have $A \times = \lambda \times$ Pre-multiplying both sides by A-1, we get A-1Ax=A-1XX

 $2x = \lambda A^{-1}x$ x = \ A-1 x

 $\Rightarrow \lambda \Rightarrow \frac{1}{\lambda} X = A^{-1} X$

From this we get, i is an eigenvalue of A-1.

(23) 2) λ_1 for (i=1,2,...,n) are the non-zero eigenvalues of A, then prove that KX; are the eigenvalues of KA, where K being a non-zero scalar. [M/J-2012] Proof: Given 2; (i=1,2,...,n) are the non-zero eigenvalues of A. Let the corresponding eigenvectors be Xi (i=1,2,...,n). Then we have

 $Ax_i = \lambda_i x_i$ (i=1,2,...,n)

Pre-nultiplying both sides by k, we get

KAX;= KX; X;

From this we get $K\lambda_i$ (i=1,2,...,n) are the eigenvalues of kA.

(24) 24 \\1, \2, \., \n are the eigenvalues of a matrix A, then Am has the eigenvalues $\lambda_1^m, \lambda_2^m, \dots, \lambda_n^m$ (m being a tre inlèger)

Proof: Fiven Di (i=1,2,...,n) are the eigenvalues of A. Let the corresponding eigenvectors be X: (i=1,2,...,n): Then we have

 $A \times_{\lambda} = \lambda_{\lambda} \times_{\lambda} T_{0}^{\lambda_{z=1}, 2, ..., n}$ $A^2x_i = A\lambda_i \times_i = \lambda_i Ax_i = \lambda_i (\lambda_i \times_i) (\cdot by 0)$

 $A^2 \times i = \lambda_i^2 \times i$

Similarly we get, A3xi = xixi

In general, Amx:= \(\lambda_i^m \times_i^m\)

From this we get, $\lambda_1^m, \lambda_2^m, \ldots, \lambda_n^m$ are the eigenvalues of A^m .

25) Find the sum & product of the eigenvalues of the matrix (-2 2 -3).

Sol: Jol: Sum of the eigenvalues = Sum of the main diagonal elements = -2+1+0=-1

Product of the eigenvalue = |A| = -2(0-12) - 2(0-6) - 3(-4+1) = 24+12+9=45(26) The product of 2 eigenvalues of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ is 16. Find the third eigenvalue. Sol: Gliven Like=16 -0 Product of eigenvalues = |A| = b(9-1)+2(-6+2)+2(2-6) = 48-8-8 = 32 1, 12 ×3 = 32 16 x 3 = 32 (- by 0) $\lambda_3 = \frac{32}{16} = 2 \qquad \therefore \lambda_3 = 2$ Q7) Two of the eigenvalues of $A = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$ are 3 & b. Find the eigenvalues of A^{-1} . 301: Gliven 2,=3 & 12=6 Sum of the eigenvalues = Sum of the main diagonal elements $3+b+\lambda_3=11 \Rightarrow 9+\lambda_3=11 \Rightarrow \lambda_3=11-9=2$ Hence the eigenvalues of A-1 are $\frac{1}{3}$, $\frac{1}{6}$ & $\frac{1}{2}$. (28) Find the eigenvalues of A⁸ given A= (1 2 3). Dol: Giren matrix A is a upper triangular matrix. i Eigenvalues of A are 1,2 & 3. (Entries of main diagonal elements)

Hence the eigenvalues of A3 are 13,23 & 38 (ii) 1,8 & 27. (29) The eigenvectors of a 3x3 real symmetric matrix A corresponding to the eigenvalues 2,3,6 are [1,0,-1], [1,1,1] & [-1,2,-1] respectively, find the matrix A. $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix}$ $N = \begin{pmatrix} 1/2 & 1/3 & -1/6 \\ 0 & 1/3 & -1/6 \\ -1/2 & 1/3 & -1/6 \end{pmatrix}$

$$A = NDN^{T} = \begin{pmatrix} \chi_{2} & \chi_{3} & -\chi_{6} \\ 0 & \chi_{3} & 2\chi_{6} \\ -\chi_{2} & \chi_{3} & -\chi_{6} \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix} \begin{pmatrix} \chi_{2} & 0 & -\chi_{2} \\ \chi_{3} & \chi_{3} & \chi_{3} \\ -\chi_{6} & 2\chi_{6} & -\chi_{6} \end{pmatrix} \\
= \begin{pmatrix} \chi_{2} & \chi_{3} & -\chi_{6} \\ 0 & \chi_{3} & 2\chi_{6} \\ -\chi_{2} & \chi_{3} & -\chi_{6} \end{pmatrix} \begin{pmatrix} 2\chi_{2} & 0 & -2\chi_{2} \\ 3\chi_{3} & 3\chi_{3} & 3\chi_{3} \\ -3\chi_{6} & 12\chi_{6} & -3\chi_{6} \end{pmatrix} \\
\therefore A = \begin{pmatrix} 1+1+1 & 1-2 & -1+1+1 \\ 1-2 & 1+4 & 1-2 \\ -1+1+1 & 1-2 & 1+1+1 \end{pmatrix} = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

Diagonalisation of non-symmetric matrix:

$$\underline{50}: \text{ Let } A = \begin{pmatrix} 1 & -2 \\ -5 & 4 \end{pmatrix}$$

Characleristic egnl. 2-5,2+52=0

31= Sum of the main diagonal elements = 1+4=5

$$3_2 = |A| = 4 - 10 = -6$$

Hence the characteristic egn), is $\lambda^2 - 5 \lambda - b = 0$

$$(\lambda - 6)(\lambda + 1) = 0$$

$$\lambda - 6 + 1$$

Hence the eigenvalues are -1 &b,
Eigenvectors:
$$(A-\lambda \overline{\Sigma}) \times = 0$$

 $\begin{pmatrix} 1-\lambda & -2 \\ -5 & 4-\lambda \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = 0$

$$\begin{pmatrix}
1-\lambda & -2 \\
-5 & 4-\lambda
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} = 0$$

$$2x_1 - 2x_2 = 0 \Rightarrow x_1 - x_2 = 0 \Rightarrow x_1 = \frac{x_2}{1}$$

$$2x_1 - 2x_2 = 0 \Rightarrow x_1 - x_2 = 0$$

$$(2 - 5) \begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} = 0 - 5x_1 + 5x_2 = 0 \Rightarrow x_1 - x_2 = 0$$

$$P^{-1} = \frac{1}{1P1} Adj P = \frac{1}{-5-2} \begin{pmatrix} -5-2 \\ -1 \end{pmatrix} = \frac{1}{-7} \begin{pmatrix} -5-2 \\ -1 \end{pmatrix}$$

$$AP = \begin{pmatrix} 1 & -2 \\ -5 & A \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -5 \end{pmatrix} = \begin{pmatrix} -1 & 12 \\ -1 & -30 \end{pmatrix} = \frac{-1}{7} \begin{pmatrix} 7 & 0 \\ 0 & -42 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 6 \end{pmatrix}$$

$$D = P^{-1}AP = -\frac{1}{7} \begin{pmatrix} -5 & -2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 12 \\ -1 & -50 \end{pmatrix} = \frac{-1}{7} \begin{pmatrix} 7 & 0 \\ 0 & -42 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 6 \end{pmatrix}$$

$$\text{Reduct the matrix} \begin{pmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{pmatrix} \text{ To the diagonal form.}$$

$$\frac{S_0!}{Ls!} A = \begin{pmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{pmatrix}$$

$$\text{Chavelinitic apply: } \lambda^2 - 5_1 \lambda^2 + 5_2 \lambda - 5_3 = 0$$

$$S_1 = -1 + 2 + 0 = 1$$

$$S_2 = \frac{1}{2} \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} + \frac{1}{1} \begin{pmatrix} -2 \\ -1 & 0 \end{pmatrix} + \frac{1}{1} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 + 1 \end{pmatrix} + 2 \begin{pmatrix} 0 + 1 \end{pmatrix} + 2$$

$$\frac{N_{1}}{1} \begin{pmatrix} -2 & 2 & -2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = 0 \qquad \begin{array}{c} -2x_{1}+2x_{2}-2x_{3}=0 \\ x_{1}+x_{2}+x_{3}=0 \\ -2x_{1}-x_{2}-x_{3}=0 \end{array} \qquad \begin{array}{c} x_{1} \\ 2-2-2 & 2 \\ 2-2-2 & 2 \\ 1 & 1 & 1 \\ 2-2-2 & 2 \\ 1 & 2-2-2 \\ 1 & 2-2-2 & 2 \\ 2 & 2-2-2 & 2$$

(32) Diagonalise the matrix
$$A = \begin{pmatrix} 0 & -2 & -2 \\ -1 & 1 & 2 \\ -1 & -1 & 2 \end{pmatrix}$$
Griven $A = \begin{pmatrix} 0 & -2 & -2 \\ -1 & 1 & 2 \\ -1 & -1 & 2 \end{pmatrix}$
Characteristic eqn.: $\lambda^8 - 5, \lambda^2 + 5_2 \lambda - 5_3 = 0$

$$S_{1}=0+1+2=3$$

$$S_{2}=\begin{vmatrix} 1 & 2 \\ -1 & 2 \end{vmatrix} + \begin{vmatrix} 0 & -2 \\ -2 \\ -1 \end{vmatrix} + \begin{vmatrix} 0 & -2 \\ -1 \end{vmatrix} + \begin{vmatrix} 0 & -2 \\ -1 \end{vmatrix} = (2+2)+(o-2)+(o-2)=a-2-2=0$$

$$S_{3}=0+2(-2+2)-2(1+1)=-h$$

Hence the characteristic eqn/. is $\lambda^{3}=3\lambda^{2}+a=0$

$$\lambda=2\begin{vmatrix} 1 & -3 & 0 & 4 \\ 2 & -2 & -4 \\ 1 & -1 & -2 & 0 \end{vmatrix}$$

$$\lambda^{2}-\lambda-2=0$$

$$(\lambda+1)(\lambda-2)=0$$

$$(\lambda+1)(\lambda$$

DIFFERENTIAL CALCULUS

Representation of function:

(i) Verbally (by a description in words)
(ii) Visually (by a graph)

(iii) Numerically (by a table of values)

(iv) Algebraically (by an explicit formula)

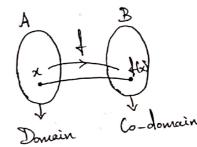
Definition: (Real-valued functions)

A function, whose domain & co-domain are subsets of the set of all real numbers, is known as real-valued function.

Definition:

Let f: A>B, then set A is called the domain of the function & set B is called the co-domain of the function.

The set of all the images of all the elements of A under the function of is called the range of I is denoted by I(A). Thus the range of t is $f(A) = \{f(x) : x \in A\}$.



Definition: (Explicit function)

If x x y be so related that y can be expressed explicitly in terms of x, then y is called explicit function of x.

 $E.g: y=x^2-4x+2$

Definition: (2 implicit function)

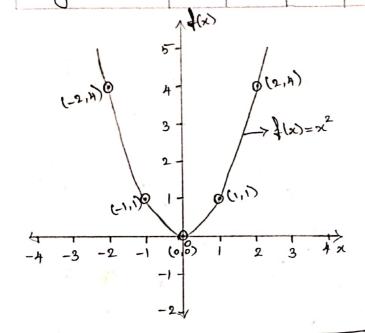
If x & y be so related that y cannot be expressed explicitly in terms of x, then y is called implicit function of x. Eq: $x^{3} + y^{3} - 3xy = 0$.

Problems:

1 Find the domain & range & sketch the graph of the function $f(x) = x^2$.

Sol: Given $f(x) = x^2$

Domain (x)		 -2	-1	0	١	2	 ∞
Range (f(x))	20	 4	١	0	١	4	 00



Domain =
$$(-\infty, \infty)$$

@ Find the domain & range of f(x)= 15x+10.

$$\Rightarrow$$
 $\chi \geq \frac{-10}{5}$

Domain (x)	-2	-1	0	١	2	.	80
Range (4(x))	0	15	110	15	120	.	8

3 Find the domain of
$$\frac{1}{4}(x) = \frac{x+4}{x^2-9}$$
.

Sol: Griven
$$f(x) = \frac{x+4}{x^2-9}$$
,

$$x^2-9=0 \Rightarrow x^2=9 \Rightarrow x=\sqrt{9}=\pm 3$$

Domain =
$$(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$$
,

4) Find the domain of
$$f(x) = \frac{1}{4\sqrt{x^2-5x}}$$

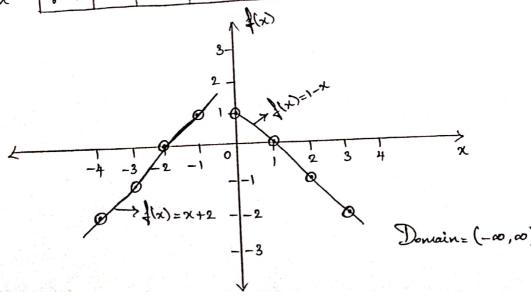
1 Find the domain & sketch the graph of the function

$$f(x) = \begin{cases} x+2 & \text{if } x < 0 \\ 1-x & \text{if } x \ge 0 \end{cases}$$

$$\frac{50!}{50!} \text{ Given } f(x) = \begin{cases} x+2 & i \neq x < 0 \\ 1-x & i \neq x \geq 0 \end{cases}$$

						1
7	2	-1	-2	-3	-4	
220					-2	
f(x) = x + 2	\$(x)	1	0			
ま(火)ニ ハ・ー						

4 (7-)						
火≥ 0_	x	0)	2	3	
f(x)=1-x	\$(x)	1	0	-1	-2	



(h) Find the domain of f(x)= \sqrt{3-x-\sqrt{2+x}}.

301: Gliven 4(x)=13-x-12+x

Hare 3-x >0 & 2+x >0 > 3≥x & x≥-2

=> -2 < x < 3

Domain = [-2,3]

Definition:

Even function: f(-x) = f(x) [or) symmetric about the y-axis]

E.g: 07(x)=1-x4

 $\frac{1}{2}(-x) = 1 - (-x)^{\frac{1}{2}} = 1 - x^{\frac{1}{2}} = \frac{1}{2}(-x)$

: f(-x)=f(x)

Hence $f(x)=1-x^{+}$ is an even function.

 $f(-x) = \cos(-x) = \cos x = f(x)$: f(x) = cosx is an even function.

Odd function: f(-x) = -f(x) [(or) symmetric about the x-axis]

E.g. 0 $f(x) = x^{5} + x$

 $\frac{1}{4(-x)} = (-x)^{\frac{1}{2}} + (-x) = -x^{\frac{1}{2}} - x = -(x^{\frac{1}{2}} + x) = -\frac{1}{4}(x)$

 $\therefore f(-x) = -f(x)$

Hence f(x)=x+x is an odd function.

2 /(x) = sinx f(-x) = sin(-x) =-sinx=-f(x)Hence f(x) = sinx is an

odd function.

Example for neither even nor odd function:

$$\frac{1}{4}(-x) = \frac{1}{-x-1} \neq \frac{1}{4}(x) \neq -\frac{1}{4}(x)$$

Hence the given function is neither even nor odd.

(2) = ex

$$f(-x) = e^{-x} + f(x) + -f(x)$$

Hence $f(x)=e^{x}$ is neither even nor odd function.

(H.w) Find the domain of $f(x) = \sqrt{x+2}$.

2) Find the domain of f(x) = 1

Limit of a function:

line f(x) = l is $f(x) \rightarrow l$ as $x \rightarrow a$ (or) f(x) approaches l as

x approaches a.

Left-hand limit:

$$\lim_{x \to a^{-}} f(x) = 1$$

Here x > a means x < a.

Right-hand limit:

Here x > a + means x > a.

Definition:

dinition:
lim
$$f(x) = l$$
 if a only if $\lim_{x \to a^{-}} f(x) = l \approx \lim_{x \to a^{+}} f(x) = l$.

Problems:

The Gruess the value of lim x-1.

$$\frac{50!}{x^2-1}$$
. Here $\frac{1}{x^2-1}$.

7	2<1					
x	\$(x)					
0.5	0.66667					
0.6	0.625					
0.7	0.58824					
0.8	0.55556					
0.9	0.52632					
0.99	0.50251					
0.999	0.50025					

x > 1	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW
X	\$(x)
1.5	0.4
1.4	0.41667
1.3	0.43478
1.2	0.45455
1.1	0.47619
1.01	0.49751
1.001	0.49975

:
$$\lim_{x \to 1} \frac{x-1}{x^2-1} = 0.5$$

(H.w) Guess the value of lim sinx.

by evaluating the function at the given numbers $x = \pm 0.5$, ± 0.1 , ± 0.01 , ± 0.001 , ± 0.0001 (correct to 6 decimal places)

501: Here
$$f(x) = \frac{5x}{x}$$

×	{(x)
-0.5	1.83583
-0.1	3.934693
-0.01	4.877058
-0.001	4.987521
-0.0001	4.99875

(Iv) Evaluate lim
$$\frac{E^4-1}{E^3-1}$$
.

$$\frac{50!}{1 + 3!} = \lim_{t \to 1} \frac{4t^3}{3t^2} = \frac{4}{3}$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(c) = 0 \text{ where } c \text{ is a}$$
constant

(AU) (Griven that
$$\lim_{x\to 2} \frac{1}{4(x)} = \frac{1}{4} \times \lim_{x\to 2} \frac{1}{2(x)} = -2$$
. Find the limit that exists for $\lim_{x\to 2} \left[\frac{3}{2(x)} \right]$.

Sol: Given $\lim_{x\to 2} f(x) = 4 + \lim_{x\to 2} g(x) = -2$.

$$\lim_{x\to 2} \left[\frac{3+(x)}{3(x)} \right] = \frac{3(4)}{-2} = -6$$

(A) (1) Sketch the graph of the function $f(x) = \begin{cases} 1+x, & x < -1 \\ x^2, & -1 \le x \le 1 \end{cases}$

to determine the value of 'a' for which lim f(x) exists? Sol:

	12						
41.	1	0.	4		•	>	•
41	May 160	1	~	,		-	1

X	- 2	-3	-4
460	-1	-2	-3

x	1	0	١
(x)	. 1	0	١

×	1	2.	3
\$(x)	1	0	-1

(-1,1) Q 1 + 12) 2 (1,1)

$$\lim_{x\to -1} \frac{1}{x} (x) = \lim_{x\to -1} (1+x) = 1+(-1) = 0$$

$$\lim_{x\to -1^+} \frac{1}{4(x)} = \lim_{x\to -1^+} x^2 = (-1)^2 = 1$$

: lim f(x) doesn't exist.

$$\lim_{x\to 1^{-}} \frac{1}{x} = \lim_{x\to 1^{-}} x^2 = 1^2 = 1$$

$$\lim_{x \to 1^+} \frac{1}{x} = \lim_{x \to 1^+} (2-x) = 2-1 = 1$$

: lim f(x) exists.

Hence lim f(x) exists for all 'a' except at a=-1.

(12) Sketch the graph of the function
$$f(x) = \begin{cases} 1 + \sin x & i \neq x < 0 \\ \cos x & i \neq 0 \leq x \leq \pi \end{cases}$$
sinx $i \neq x > \pi$

determine the value of 'a' for which lim f(x) exists.

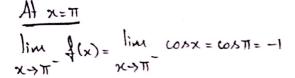
51.	$\frac{1}{2}$ $\frac{1}$)= 1+sinx, x <0 f(x)=cosx, 0 \(x \le T \)				$\sin x$, $x > \pi$
<u> 201:</u>	X	- T/2	- π	0	π/2	π	317	211
	\$(x)	0)	١	0	-1	-)	0

At x=0

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} (1+\sin x) = 1+\sin 0 = 1+0=1$$

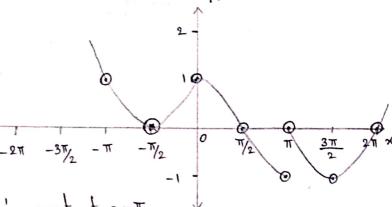
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \cos x = \cos 0 = 1$$

: lim f(x) exists.



 $\lim_{x \to \pi} f(x) = \lim_{x \to \pi^+} f(x) = 0$

: lim f(x) doesn't exist.



Hence lim f(x) exists for all 'a' except at a=T.

(13) Check whether line 3x+9 exist.

Sol:
$$\lim_{x \to -3} \frac{3x+9}{-(x+3)} = \lim_{x \to -3} \frac{3(x+3)}{-(x+3)} = -3$$

 $\lim_{x \to -3} \frac{3x+9}{x+3} = \lim_{x \to -3} \frac{3(x+3)}{x+3} = 3 \cdot \text{Here lim}_{x \to -3} = 4(x) + \lim_{x \to -3} 4(x)$

: lim f(x) doesn't exist.

Definition: (Continuity)

A function of is continuous at 'a' if lim f(x) = f(a).

(i) If is continuous at a, then

- (i) f(a) should exist
- (ii) line f(x) exists both on the left & right.
- (iii) lim f(x) = f(a).

Eg: - Polynomials, rational functions, root functions, trignometric functions, inverse trignometric functions, exponential functions, logarithmic functions.

(14) Find the numbers that at which of is discontinuous, at which of these numbers if it is continuous from the right from the left or neither? When f(x)= { x+2, x <0 ex, 0 < x <1

$$\lim_{x\to 0} \frac{1}{x} = \lim_{x\to 0} (x+2) = 0+2=2$$

Hence of is continuous on the right at x=0 & f is discontinuous on the left at x=0.

: 7 is discontinuous at x=0.

$$\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} e^x = e^1 = e$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (2-x) = 2-1 = 1$$

$$f(i) = e = e$$

 $\lim_{x \to 1^+} f(x) = f(i) \neq \lim_{x \to 1^+} f(x)$

Hence of is continuous on the left at x=1 & f is discontinuous on the

right at x=1. i. I is discontinuous at x=1.

Thus of is continuous in (-00,0) U(0,1) U(1,00).

(H.W) Find the domain where the function of is continuous. Also find the numbers at which the function of is discontinuous, where

$$\frac{1}{4}(x) = \begin{cases} 1+x^2, & x \leq 0 \\ 2-x, & 0 < x \leq 2 \\ (x-2)^2, & x > 2 \end{cases}$$

(A) For what value of the constant b, is the function of continuous on $(-\infty, \infty)$ if $f(x) = \int bx^2 + 2x$ if x < 2. $\begin{cases} x^3 - bx & \text{if } x \ge 2 \end{cases}$

$$\lim_{x\to 2^{-}} \frac{1}{x} = \lim_{x\to 2^{-}} \left(bx^{2} + 2x \right) = 4b + 4$$

$$f(2) = (2)^3 - b(2) = 8 - 2b$$

$$\Rightarrow$$
 4b+4=8-2b \Rightarrow 4b+2b=8-4

$$\Rightarrow$$
 6b = 4 \Rightarrow b = $\frac{4}{6}$ = $\frac{2}{3}$

(16) Find the values of a & b that make of continuous on $(-\infty, \infty)$.

$$\frac{1}{4(x)} = \begin{cases} \frac{x^3 - 8}{x - 2}, & \text{if } x < 2 \\ ax^2 - bx + 3, & \text{if } 2 \le x < 3 \\ 2x - a + b, & \text{if } x \ge 3 \end{cases}$$

$$\frac{d(x^n)}{dx} = nx^{n-1}$$

$$\lim_{x \to 0^{-}} \frac{1}{x} = \lim_{x \to 0^{-}} \frac{x^{\frac{3}{8}} - 8}{x - 2} = \lim_{x \to 0^{-}} \frac{3x^{\frac{2}{8}}}{1} = \lim_{x \to 0^{-}} 3x^{\frac{2}{8}} = 3(2)^{\frac{1}{8}} = 12$$

$$f(2) = a(2)^2 - b(2) + 3 = 4a - 2b + 3$$

Since f is continuous, $\lim_{x\to 2} f(x) = f(2)$

$$\Rightarrow$$
 12 = $4a - 2b + 3 \Rightarrow 4a - 2b = 12 - 3 = 9 \Rightarrow $4a - 2b = 9 - 0$$

$$A = 3$$

$$\lim_{x \to 3^{-}} \frac{1}{4(x)} = \lim_{x \to 3^{-}} ax^{2} - bx + 3 = a(3)^{2} - b(3) + 3 = 9a - 3b + 3$$

$$f(3) = 2(3) - a + b = b - a + b$$

Since
$$\frac{1}{4}$$
 is continuous, $\lim_{x\to 3^{-}} \frac{1}{4(x)} = \frac{1}{4(3)}$

$$\Rightarrow$$
 9a-3b+3=b-a+b \Rightarrow 9a+a-3b-b=6-3

$$0 \times 2 \Rightarrow 8a - 4b = 18$$

$$10a - 4b = 3 - 2$$

$$(-) (+) (-)$$

$$-2a = 15 \Rightarrow a = \frac{15}{-2}$$

$$\alpha = \frac{-15}{2}$$

Substituting a value in
$$\mathbb{O}$$
, $4\left(\frac{-1b}{2}\right) - 2b = 9$

$$\Rightarrow -30-2b=9 \Rightarrow 2b=-30-9=-39 \Rightarrow b=\frac{-39}{2}$$

Hence
$$a = \frac{-15}{2} + b = \frac{-39}{2}$$

If
$$f(x) = \int \frac{x^2-4}{x-2}$$
, $x < 2$ is continuous for all real x , find the $\int ax^2-bx+3$, $2 \le x < 3$
 $2x-a+b$, $x \ge 3$

values of a & b.

Formulae:

$$\oint \frac{d}{dx}(x^n) = nx^{n-1}$$

(3)
$$\frac{d}{dx}(c_{\frac{1}{2}}(x)) = c_{\frac{1}{2}}(x)$$

(4) Equation of tangent line is $y-y_1 = m(x-x_1)$ where $m = \frac{dy}{dx}$.

(4) Equation of langer size of some of line is
$$y-y_1 = \frac{-1}{m}(x-x_1)$$
 where $m = \frac{dy}{dx}$.

Problems:

(i)
$$\frac{1}{4}(x) = x$$

$$f'(x) = 1000 \times 1000 - 1 = 1000 \times$$

(ii)
$$y = \frac{1}{x^2}$$

 $y = \frac{1}{x^2} = x^{-2}$
 $y' = (-2)x^{-2-1} = (-2)x^{-3} = \frac{-2}{x^3}$

(iii)
$$y = \sqrt[3]{x^2}$$

 $y = (x^2)^{\frac{1}{3}} = x^{\frac{2}{3}}$
 $y' = \frac{2}{3}x^{\frac{2}{3}-1} = \frac{2}{3}x^{-\frac{1}{3}} = \frac{2}{3x^{\frac{1}{3}}}$

(iv)
$$y = x^8 + 12x^5 - 4x^4 + 10x^3 - 6x + 7$$

 $y' = 8x^7 + 12(5x^4) - 4(4x^3) + 10(3x^2) - 6$
 $y' = 8x^7 + 60x^4 - 16x^3 + 30x^2 - 6$

(v)
$$y = ax^{2n} + bx^{n} + c$$

 $y' = a(2n)x^{2n-1} + bnx^{n-1} = 2anx^{2n-1} + bnx^{n-1}$

(vi)
$$y = \frac{x^2 + 4x + 3}{\sqrt{x}}$$

 $y = x^{-1/2} \left(x^2 + 4x + 3 \right) = x^{-1/2} x^2 + 4x x^{-1/2} + 3x^{-1/2} = x^{3/2} + 4x^2 + 3x^{-1/2}$
 $y' = \frac{3}{2} x^{3/2-1} + \frac{1}{2} x^4 x^{-1/2-1} + 3 \left(-\frac{1}{2} \right) x^{-1/2-1}$
 $y' = \frac{3}{2} x^{3/2-1} + \frac{1}{2} x^4 x^{-1/2-1} + 3 \left(-\frac{1}{2} \right) x^{-1/2-1}$
 $y' = \frac{3}{2} x^{3/2-1} + \frac{1}{2} x^4 x^{-1/2-1} + 3 \left(-\frac{1}{2} \right) x^{-1/2-1}$
 $y' = \frac{3}{2} x^{-1/2-1} + \frac{1}{2} x^4 x^{-1/2-1} + 3 \left(-\frac{1}{2} \right) x^{-1/2-1}$

Does the curve $y = x^{\frac{1}{2}} - 2x^{\frac{2}{2}} + 2$ have any horizontal tangents? If so where?

Sol: Given y=x+2x+2 Horizontal tangents occur where the derivative is zero.

(a)
$$\frac{dy}{dx} = 0 \Rightarrow 4x^3 - 4x = 0 \Rightarrow 4x(x^2 - 1) = 0$$

 $\Rightarrow x = 0, x^2 - 1 = 0 \Rightarrow x^2 = 1 \Rightarrow x = \pm 1$

~ x=0,1,-1

-	X	-1	0	1
	8	1	2)

Hence the corresponding points are (-1,1), (0,2) & (1,1).

(19) The equation of motion of a particle is s=2+3-5+2+3+47, where S is measured in centimeters & t in seconds. Find the acceleration as a function of time. What is the acceleration after 2 seconds?

Sol: Velocity =
$$\frac{ds}{dt} = 6t^2 - 10t + 3$$

Acceleration = $\frac{d^2s}{dt^2} = 12t - 10$

$$\left[\frac{d^2s}{dt^2}\right]_{t=2} = 12(2) - 10 = 24 - 10 = 14$$

(H.w) Problem:

O Find the derivative of the following functions: (ii) $y = x^{\sqrt{2}}$ (iii) $y = x^{2}(1-2x)$ (iv) $y = x^{2.4} + e^{2.4}$

Formulae:

(2)
$$\frac{d}{dx}(e^{2x}) = e^{2x}$$
, $2 = 2e^{2x}$

Problems:

20 Find the derivative of the following functions:

$$y = 3e^{x} + \frac{4}{x^{1/3}} = 3e^{x} + 4x^{-1/3}$$

$$y' = 3e^{x} + 4(-y_3)x^{-y_3-1} = 3e^{x} - \frac{4}{3}x^{-\frac{4}{3}}$$

(ii)
$$y = a^{x}$$

 $y = a^{x} = \log a^{x} = x \log a = (\log a)x$

(H. D) Find the derivative of the following functions:

Formulae:

$$2 \frac{d}{dx} \left(\frac{u}{r} \right) = \frac{vu' - uv'}{v^2}$$

$$\frac{1}{4}(x) = x^{4}(e^{x}) + e^{x}(4x^{3})$$

$$= x^{4}e^{x} + 4e^{x}x^{3} = e^{x}(x^{4} + 4x^{3})$$

$$\frac{1}{4} (x) = e^{x} (4x^{3} + 12x^{2}) + (x^{4} + 4x^{3}) e^{x}$$

$$= e^{x} (4x^{3} + 12x^{2} + x^{4} + 4x^{3})$$

$$= e^{x} (x^{4} + 8x^{3} + 12x^{2})$$

$$u = x^{4}$$
, $y = e^{x}$
 $u' = 4x^{3}$, $y' = e^{x}$
 $d(uy) = uy' + yu'$

$$u = e^{x}$$
, $v = x^{4} + 4x^{3}$
 $u' = e^{x}$, $v' = 4x^{3} + 12x^{2}$

(22) If
$$\frac{1}{1+2x}$$
, then find $\frac{1}{1+2x}$.

Sol: Given
$$f(x) = \frac{x^2}{1+2x}$$

$$\frac{f'(x) = \frac{(1+2x)(2x) - x^2(2)}{(1+2x)^2}}{(1+2x)^2} = \frac{2x+4x^2-2x^2}{(1+2x)^2} = \frac{2x^2+2x}{(1+2x)^2}$$

$$f''(x) = \frac{(1+2x)^2(4x+2) - (2x^2+2x) + (1+2x)}{(1+2x)^4}$$

$$=\frac{(1+2x)\left[(1+2x)(4x+2)-4(2x^{2}+2x)\right]}{(1+2x)^{4}}$$

$$=\frac{4x+2+8x^{2}+4x-8x^{2}-8x}{(1+2x)^{3}}=\frac{2}{(1+2x)^{3}}$$

$$d\left(\frac{u}{v}\right) = \frac{vu' - uv'}{v^2}$$

$$u = x^2, \quad v = 1 + 2x$$

$$u' = 2x, \quad v' = 2$$

$$u=2x^{2}+2x$$
, $t=(1+2x)^{2}$
 $u'=4x+2$, $t'=2(1+2x)\cdot 2$
 $t'=4(1+2x)$

(AU) 23 24 f(x) = xex then find the expression for f"(x).

$$f''(x) = xe^{x} + e^{x}(1) + e^{x} = xe^{x} + 2e^{x} = e^{x}(x+2)$$

$$u=x, v=e^{x}$$
 $u'=1, v'=e^{x}$
 $d(uv)=uv+vu'$

$$u' = \chi^{2}(e^{2x}.2) + e^{2x}(2x)$$

$$v = (x^2 + 1)^4$$

$$v' = 4(x^2 + 1)^3 (2x)$$

$$\frac{dy}{dx} = x^{2} e^{2x} \left(4 \left(x^{2} + 1 \right)^{3} \left(2x \right) + \left(x^{2} + 1 \right)^{4} \left(2x^{2} e^{2x} + 2x e^{2x} \right) \right)$$

$$= \left(x^{2} + 1 \right)^{3} \left[8x^{3} e^{2x} + \left(x^{2} + 1 \right) 2x e^{2x} \left(x + 1 \right) \right]$$

=
$$(x^{2}+1)^{3}2xe^{2x}\left[4x^{2}+(x^{2}+1)(x+1)\right]$$

If $f(x) = \frac{1-x}{2+x}$ then find the equation for f'(x) using the concept of derivatives.

Sol: Given
$$f(x) = \frac{1-x}{2+x}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{1 - (x+h)}{2 + (x+h)} - \frac{1 - x}{2 + x}$$

=
$$\lim_{h\to 0} \frac{(1-x-h)(2+x)-(1-x)(2+x+h)}{h(2+x)(2+x+h)}$$

$$h \to 0 \qquad h(2+x)(2+x+h)$$
= $\lim_{h\to 0} \frac{2+x-2x-x^2-2h-xh-(2+x+h-2x-x^2-xh)}{h(2+x)(2+x+h)}$

=
$$\lim_{h\to 0} \frac{2+x-2x-x^2-2h-xh-2-x^2-h+2x+x^2+xh}{h>0}$$

$$=\lim_{h\to 0}\frac{-3h}{h(2+x)(2+x+h)}=\lim_{h\to 0}\frac{-3}{(2+x)(2+x+h)}$$

$$=\frac{-3}{(2+x)(2+x)}=\frac{-3}{(2+x)^2}$$

& Differentiate the following functions

$$(16)\frac{1}{4}(x) = \frac{x^2 + x - 2}{x^3 + 6}$$

Formulae

(12)
$$\tan x = \frac{\sin x}{\cos x}$$

Problems:

(26) Find the derivative of the following:

y'=-cosecx cotx +[-excosecx+exotx]

= - cosecx cotx +ex (-cosecx + cotx)

$$u = secx$$
, $v = 1 + tanx$
 $u' = secxtanx$, $v' = sec^2x$
 $d(\frac{u}{v}) = \frac{vu' - uv'}{v^2}$

= secx[tanx+tan2x-secx] secx(tanx-1) (:1+tan2x=sec2x)

(Itlanx)2

$$f^{(25)}(x) = - sinx$$

(H.W) Problem:

(Find the derivative of the following:

(i)
$$y = \frac{\cos x}{1 - \sin x}$$
 (ii) $y = \sin x \tan x$

2 Find d97 (sinx).

Formulae:

$$(\int \frac{d}{dx} (\sin^{-1}x) = \int_{1-x^2}^{1}$$

$$(5) \frac{d}{dx} (cosec^{-1}x) = \frac{-1}{x\sqrt{x^2-1}}$$

$$(1) \frac{d}{dx} (coth^{-1}x) = \frac{1}{1-x^2}$$

(2)
$$\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$$

$$(4) \frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$$

$$\frac{d}{dx}(\sinh^{-1}x) = \frac{1}{\sqrt{1+x^2}}$$

(18)
$$\frac{d}{dx}$$
 (cosech-1x) = $\frac{-1}{x}$ $\sqrt{x^2+1}$

$$(9) \frac{d}{dx} (sech^{-1}x) = \frac{-1}{x \sqrt{1-x^2}}$$

(21)
$$\cosh x = \frac{e^{x} + e^{-x}}{2}$$

(20) sinhx =
$$e^{\chi} - e^{-\chi}$$

(22) cosech
$$x = \frac{1}{\sinh x}$$

$$y' = \frac{1}{2} (\cos \sqrt{x})^{\frac{1}{2} - 1} (-\sin \sqrt{x}) (\frac{1}{2} x^{\frac{1}{2} - 1})$$

$$=\frac{1}{2}\left(\cos\sqrt{x}\right)^{-1/2}\left(-\sin\sqrt{x}\right)\left(\frac{1}{2}x^{-1/2}\right)=\frac{-\sin\sqrt{x}}{4\sqrt{\cos\sqrt{x}}\sqrt{x}}$$

(H.w) Find
$$y'$$
 if (i) $y = sin^5 x$ (ii) $y = cos(x^2)$ (iii) $y = e^{\sqrt{x}}$ (iv) $y = sin(sin(sinx))$

Differentialing O, with respect to x, we get

Differentialing (1), with respect to x, we get

$$4x^3 + 4y^3 \cdot y' = 0 \Rightarrow x^3 + y^3 \cdot y' = 0 - (2) \Rightarrow y^3y' = -x^3 \Rightarrow y' = -\frac{x^3}{y^3} - (3)$$
Differentialing (2) with respect to x, we get
$$u = y^3, v = y'$$

$$u' = 3y' \cdot y' \quad v' = y''$$

Differentialing @ with respect to x, we get

$$3x^2 + y^3 \cdot y'' + y' \cdot 3y^2 \cdot y' = 0$$

$$3x^2 + y^3 \cdot y'' + 3y^2 \left(-\frac{x^3}{y^3}\right)^2 = 0$$

$$3x^{2}+y^{3}$$
. $y'' + 3y^{2}\left(\frac{x^{6}}{y^{6}}\right) = 0 \Rightarrow 3x^{2}+y^{3}$. $y'' + \frac{3x^{6}}{y^{4}} = 0$

$$\Rightarrow y^{3}y'' = -3x^{2} - \frac{3x^{6}}{y^{4}} = -3x^{2} \left(1 + \frac{x^{4}}{y^{4}}\right) = -3x^{2} \left(\frac{y^{4} + x^{4}}{y^{4}}\right) = -3x^{2} \left(\frac{16}{y^{4}}\right)$$
(: by 1)

d(ux)=ux++u

$$y'' = -\frac{48x^2}{y^7}$$

(30) Find y' for cos(xy) = 1+sing.

Diff. 1 w.r.t. x, we get

$$\therefore y' = \frac{-y \sin(xy)}{\cos y + x \sin(xy)}$$

(AU) Find the derivative of $f(x) = \cos^{-1}\left(\frac{b + a\cos x}{a + b\cos x}\right)$.

$$\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$$

$$\frac{1}{1 - \left(\frac{b + a \cos x}{a + b \cos x}\right)^2}$$

$$f'(x) = \frac{-1}{\sqrt{1 - \left(\frac{b + a\cos x}{a + b\cos x}\right)^2}} \left[\frac{(a + b\cos x)(-a\sin x) - (b + a\cos x)(-b\sin x)}{(a + b\cos x)^2}\right]$$

u=b+aconx, V=a+bconx

$$d\left(\frac{u}{v}\right) = \frac{vu' - uv'}{v^2}$$

$$f'(x) = \frac{-(a+b\cos x)}{(b+a\cos x)^2}$$

$$\frac{1'(x) = -(a+b\cos x)}{\sqrt{(a+b\cos x)^2 - (b+a\cos x)^2}} \left[\frac{-a^2\sin x - ab\sin x\cos x + b^2\sin x + ab\sin x\cos x}{(a+b\cos x)^2} \right]$$

$$= \frac{-1}{\sqrt{a^2+b^2\cos^2x+2ab\cos^2x-b^2-a^2\cos^2x-2ab\cos^2x}} \left(\frac{\sin x \cdot (b^2-a^2)}{a+b\cos x}\right)$$

$$=\frac{(a^{2}-b^{2})\sin x}{(a+b\cos x)\sqrt{(a^{2}-b^{2})-\cos^{2}x(a^{2}-b^{2})}}=\frac{(a^{2}-b^{2})\sin x}{(a+b\cos x)\sqrt{(a^{2}-b^{2})(1-\cos^{2}x)}}$$

$$= \frac{(a^2-b^2)\sin x}{(a+b\cos x)\sqrt{(a^2-b^2)\sin^2 x}}$$

$$= \frac{(a^2-b^2)\sin x}{(a+b\cos x)\sin x}\sqrt{\frac{a^2-b^2}{a^2-b^2}} = \frac{\sqrt{a^2-b^2}}{a+b\cos x}$$

(32) Find the derivative of $f(x) = [anh^{-1}] [tan \frac{x}{2}]$.

$$\frac{1}{1-\left(\tan\frac{\chi}{2}\right)^2}\left(\sec^2\frac{\chi}{2}\right)\left(\frac{1}{2}\right)$$

$$= \frac{1}{1 - \tan^{2} \frac{x}{2}} \left(\sec^{2} \frac{x}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{1 - \frac{\sin^{2} \frac{x}{2}}{\cos^{2} \frac{x}{2}}} \left(\sec^{2} \frac{\frac{x}{2}}{2} \right) \left(\frac{1}{2} \right)$$

$$= \frac{\cos^2 x/2}{\cos^2 x/2 - \sin^2 x/2} \left(\frac{1}{2} \sec^2 x/2 \right) = \frac{\cos^2 x/2}{\cos^2 x/2 - \sin^2 x/2} \left(\frac{1}{2\cos^2 x/2} \right)$$

$$=\frac{1}{2\left(\cos^2 x/_2 - \sin^2 x/_2\right)}$$

(A) Find the tangent line to the equation $x^3+y^3=6xy$ at the point (3,3) at what point the tangent line horizontal in the first quadrant.

Diff. O w.r.t. x, we get

$$3x^2 + 3y^2 \cdot y' = 6(xy' + y \cdot 1)$$

$$\Rightarrow 3x^{2} + 3y^{2}y' = 6xy' + 6y \Rightarrow 3y^{2}y' - 6xy' = 6y - 3x^{2}$$

$$\Rightarrow y'(3y^2-6x) = by-3x^2 \Rightarrow y' = \frac{by-3x^2}{3y^2-6x}$$

$$(4')_{(3,3)} = \frac{6(3)-3(3)^2}{3(3)^2-6(3)} = \frac{18-27}{27-18} = \frac{-9}{9} = -1 = m$$
 (Slope)

Equation of tangent line is y-y,=m(x-x,)

$$y-3=-1(x-3) \Rightarrow y-3=-x+3$$

$$\Rightarrow x+y=3+3=6 \Rightarrow x+y=6$$

$$\frac{1}{2\cos^2 \frac{\pi}{2}}$$

$$\frac{1}{2\cos$$

 $\frac{d}{d}\left(\tanh^{-1}x\right) = \frac{1}{1-x^2}$

d (tanx) = sec x

(a)
$$y' = \frac{6y - 3x^2}{3y^2 - 6x} = \frac{2y - x^2}{y^2 - 2x} = 0$$

$$\Rightarrow 2y-x^2=0 \Rightarrow 2y=x^2 \Rightarrow y=\frac{x^2}{2}$$

Substituting @ in (1),

$$\chi^{3} + \left(\frac{\chi^{2}}{2}\right)^{3} = 6\chi\left(\frac{\chi^{2}}{2}\right) \Rightarrow \chi^{3} + \frac{\chi^{6}}{8} = \frac{6\chi^{3}}{2} = 3\chi^{3}$$

$$\Rightarrow \frac{x^{6}}{8} = 3x^{3} - x^{3} = 2x^{3} \Rightarrow \frac{x^{3}}{8} = 2 \Rightarrow x^{3} = 16 = 2^{4}$$

$$\Rightarrow \boxed{x = 2^{4/3}} - 3$$

$$\Rightarrow \boxed{x = 2^{73}} - \boxed{3}$$

$$5ubs[.3] in ②, \forall = (2^{4/3})^2 = 2^{8/3} = 2^{8/3} \cdot 2^{-1} = 2^{8/3} = 2^{7/3}$$

Hence the tangent line is horizontal at (24/3, 25/3).

Sol: Given y=(sinx)(sinx)

Diff. O word x, we get

$$y'\left(\frac{1}{y} - \log(\sin x)\right) = y\omega + x \Rightarrow y'\left(\frac{1 - y\log(\sin x)}{y}\right) = y\omega + x$$

$$\Rightarrow y' = \frac{y^2 \cot x}{1 - y \log(\sin x)} = \frac{y^2 \cot x}{1 - \log(\sin x)} = \frac{y^2 \cot x}{1 - \log y} \quad (\because by \, \mathcal{C})$$

(35) Find an equation of the normal line to the curve y= 1/x at the point (1,1).

$$y = x^{1/4}$$
 $\frac{dy}{dx} = m = \frac{1}{4}x^{1/4-1} = \frac{1}{4}x^{-3/4}$
 $\frac{dy}{dx} = m = \frac{1}{4}x^{1/4-1} = \frac{1}{4}x^{-3/4}$
 $\frac{dy}{dx} = m = \frac{1}{4}x^{1/4-1} = \frac{1}{4}x^{-3/4}$
 $\frac{dy}{dx} = m = \frac{1}{4}x^{1/4-1} = \frac{1}{4}x^{-3/4}$
Equation of the normal line is

$$y-y_1=-\frac{1}{m}\left(x-x_1\right)$$

$$y-1=\frac{-1}{y_4}(x-1) \Rightarrow y-1=-4(x-1)$$

$$\Rightarrow$$
 $y-1=-4x+4 \Rightarrow 4x+y=4+1=5 \Rightarrow 4x+y=5$

(1) If
$$x^3+y^3=16$$
 find the value of $\frac{d^2y}{dx^2}$ at $(2,2)$

(3) If
$$e^{3}\cos x = 1 + \sin(xy)$$
, then find $\frac{1}{3}x$.

(4) Find an equation of the tangent line to the curve $y \sin(2x) = x \cos(2y)$ at the point $(\frac{\pi}{2}, \frac{\pi}{4})$.

(36) Find the critical points of
$$y = 5x^3 - 6x$$
.

$$y' = 15x^2 - b = 0 \Rightarrow 15x^2 = b \Rightarrow x^2 = \frac{b}{15} = \frac{2}{5}$$

Definition: (Critical number)

A critical number of a function of is a number c in the domain of I such that either I'(c) = 0 or I'(c) does not exist.

(37) Find the critical points of
$$f(x) = x^{3/5}(4-x)$$
.
Sol: Given $f(x) = x^{3/5}(4-x) = 4x^{3/5} - x x^{3/5} = 4x^{3/5} - x^{3/5}$
Critical points: $f'(x) = 0$

$$\frac{1}{(x)} = 4\left(\frac{3}{5}\right)x^{\frac{3}{5}-1} - \frac{8}{5}x^{\frac{5}{5}-1} = 0$$

$$\Rightarrow \frac{12}{5}x^{-\frac{2}{5}} - \frac{8}{5}x^{\frac{3}{5}} = 0$$

$$\Rightarrow \frac{12}{5}x^{-\frac{2}{5}} = \frac{8}{5}x^{\frac{3}{5}} \Rightarrow \frac{12}{5}x^{\frac{5}{5}} = \frac{x^{\frac{3}{5}}}{x^{-\frac{2}{5}}} = x^{\frac{3}{5}}$$

$$\Rightarrow \frac{3}{5} = x$$

f'(x) doesn't exist when x=0.

Hence the critical points are 0 & 3/2.

First derivative test:

Suppose that c is a critical number of a continuous function f.

(i) If I changes from + to - at c, then I has a local maximum at c.

(ii) If f' changes from - to + at c, then f has a local numeroum at c.

(iii) If I' does not change sign at c, then I has no local maximum or minimum at c.

Second derivative test:

Suppose d'' is continuous near c.

(i) 2] {1'(c)=0 & f"(c)>0, then I has a local minimum at c.

(ii) If f'(c)=0 & f"(c)<0, then of has a local maximum at c.

(A) If $f(x) = 2x^3 + 3x^2 - 36x$, find the intervals on which it is increasing or decreasing, the local maximum & local minimum values of f(x).

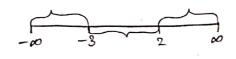
Also find the intervals of concavity & the inflection points.

Sol: (river
$$f(x) = 2x^3 + 3x^2 - 36x$$

 $\Rightarrow f'(x) = 6x^2 + 6x - 36$
 $\Rightarrow f'(x) = 6x^2 + 6x - 36$
 $\Rightarrow f'(x) = 6x^2 + 6x - 36$
 $\Rightarrow f'(x) = 6x^2 + 6x - 36$

$$\frac{2\pi i \sqrt{100}}{\sqrt{100}} = \frac{1}{\sqrt{100}} = \frac{1}{\sqrt{10$$

Critical points are -3 & 2.



Interval	Sign of d'	Behavior of 4
-m <x<-3< td=""><td>+</td><td>increasing } local maximum</td></x<-3<>	+	increasing } local maximum
-3< x < 2	_	decreasing
2< ×< 00	+	increasing } local minimum

At x=-3, we get local maximum & at x=2, we get local minimum

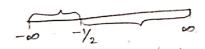
$$\frac{1}{4}(-3) = 2(-3)^8 + 3(-3)^2 - 36(-3) = 81$$

$$f(2) = 2(2)^3 + 3(2)^2 - 36(2) = -44$$

Hence the local maximum value is &1 & the local minimum value is -44.

$$\frac{1}{4}(x) = 12x + 6 = 0 \Rightarrow 12x = -6 \Rightarrow x = \frac{-6}{12} = \frac{-1}{2}$$

$$-1.\sqrt{\chi = \frac{-1}{2}}$$



Interval	Sign of f"	Behaviour of 4
-00 <x<-1 2<="" td=""><td>_</td><td>Concare down</td></x<-1>	_	Concare down
-1/2 <x< 00<="" td=""><td>+</td><td>Concave up</td></x<>	+	Concave up

Inflection points:

$$\frac{1}{1}(-\frac{1}{2}) = 2(-\frac{1}{2})^{3} + 3(-\frac{1}{2})^{2} - 36(-\frac{1}{2}) = \frac{37}{2}$$

Hence the inflection point is $\left(-\frac{1}{2}, \frac{37}{2}\right)$.

(39) For the function $f(x) = 2 + 2x^2 - x^4$, find the intervals of increase or decrease, local maximum & minimum values, the intervals of concavity & the inflection points.

$$f'(x) = 4x - 4x^3$$

$$f(x) = 0 \Rightarrow 4x - 4x^3 = 0 \Rightarrow 4x(1-x^2) = 0 \Rightarrow x = 0, 1-x^2 = 0$$

=> x=0, x=1=> x= 1= ±1

Hence the critical points are -1,0 &1.

~		5	A Più	-
-00	1	0	1	00

-	Interval	Sign of J'	Behaviour of 4
-	-00 < x < -1	+	increasing } local maximum
	-1 イメ く 0		decreasing } local nanimum
	0イメイ 1	+	increasing
1	1< x < 00		decreasing } local maximum

At x = ±1, we get local maximum value.

$$\frac{1}{4}(1) = 2 + 2(1)^{2} - (1)^{4} = 2 + 2 - 1 = 3$$

: Local maximum value is 3.

At x=0, we get local minimum value.

$$f(0) = 2 + 2(0)^2 - (0)^4 = 2$$

: Local minimum value is 2.

$$f''(x) = 4 - 12x$$

$$f''(x) = 0 \Rightarrow 4 - 12x^2 = 0 \Rightarrow 12x^2 = 4 \Rightarrow x^2 = \frac{4}{12} = \frac{1}{3} \Rightarrow x = \frac{1}{3}$$

$$\Rightarrow x = \pm \frac{1}{3} \Rightarrow x = \pm$$

Interval	Sign of f"	Behaviour of f
-ocxx-1/3	_	Concave down
13 -1-2-4x4 13	+	Concave up
1 < x < 00	-	Concave down

$$-\frac{1}{\sqrt{3}} = -0.6$$

$$\frac{1}{\sqrt{3}} = 0.6$$

Inflection points:

$$\frac{1}{4\left(\frac{1}{\sqrt{3}}\right)} = 2 + 2\left(\frac{1}{\sqrt{3}}\right)^2 - \left(\frac{1}{\sqrt{3}}\right)^4 = 2 + \frac{2}{3} - \frac{1}{9} = \frac{23}{9}$$

$$4\left(\frac{-1}{\sqrt{3}}\right) = 2 + 2\left(\frac{-1}{\sqrt{3}}\right)^2 - \left(\frac{-1}{\sqrt{3}}\right)^4 = 2 + \frac{2}{3} - \frac{1}{9} = \frac{23}{9}$$

Hence the infliction points are $\left(-\frac{1}{\sqrt{3}}, \frac{23}{9}\right) \approx \left(\frac{1}{\sqrt{3}}, \frac{23}{9}\right)$.

40 Find the local maximum & minimum values of f(x) = \sqrt{x} - 4\sqrt{x} using both the first & second derivative tests.

Sol: Given f(x)= Tx - 4/x = x/2-x/4 $\frac{1}{4}(x) = \frac{1}{2}x^{\frac{1}{2}-1} - \frac{1}{4}x^{\frac{1}{4}-1} = \frac{1}{2}x^{-\frac{1}{2}} - \frac{1}{4}x^{-\frac{3}{4}}$

Critical points:

$$\frac{1}{4}(x) = 0 \Rightarrow \frac{1}{2}x^{-\frac{1}{2}} = 0 \Rightarrow \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{4}x^{-\frac{3}{4}}$$

$$\Rightarrow \frac{1}{2} = \frac{x^{-\frac{3}{4}}}{x^{-\frac{1}{2}}} \Rightarrow 2 = x^{-\frac{3}{4}} \cdot x^{\frac{1}{2}} = \frac{1}{4}x^{-\frac{3}{4}}$$

$$\Rightarrow 2 = x^{-\frac{3}{4}} \Rightarrow 2 = x^{-\frac{3}{4}} \cdot x^{\frac{1}{2}} = x^{-\frac{3}{4}} = x^{\frac{1}{4}}$$

$$\Rightarrow 2 = x^{-\frac{1}{4}} \Rightarrow \frac{2}{x^{-\frac{1}{4}}} = 1 \Rightarrow 2x^{\frac{1}{4}} = 1 \Rightarrow x^{\frac{1}{4}} = \frac{1}{16}$$

$$\Rightarrow x = (\frac{1}{2})^{\frac{1}{4}} = \frac{1}{16}$$

At x=0, &'(x) doesn't exist.

Hence the critical points are 0 4 16.

First derivative test:

1	Interval	Sign of f	Behaviour of +
	ーめくれくの	(not defined)	(not defined)
1	0 ベスイ次	_	decreasing
	1/6 < x < 20	+	increasing

local niminum

At x= 1/6, we get local ninimum value.

Hence the local ninimum value is -1/4.

Second derivative test:

$$\frac{1}{4}''(x) = \frac{1}{2} \left(-\frac{1}{2} \right) x^{-\frac{1}{2} - 1} - \frac{1}{4} \left(-\frac{3}{4} \right) x^{-\frac{3}{4} - 1} = -\frac{1}{4} x^{-\frac{3}{2} + \frac{3}{16}} x^{-\frac{7}{4}}$$

$$\therefore \frac{1}{4} \left(\frac{1}{16} \right) = -16 + 24 = 8 > 0 \Rightarrow |oca| \text{ minimum at } x = \frac{1}{16}.$$

Hence the local minimum value is -1/4,

For the function $f(x) = x^3 - 3x^2 + 1$, find the intervals of increase or decrease, local maximum & minimum values, the intervals of

concavity & the inflection points.

2) For the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$, find the intervals of increase or decrease, local maximum & minimum values, the intervals of concavity & the inflection points.

$$\frac{50!}{x \to \infty} \frac{\lim_{x \to \infty} \frac{xy + 5}{x^2 + 2y^2}}{\frac{1}{x^2 + 2y^2}} = \lim_{x \to \infty} \left[\frac{\lim_{x \to \infty} \frac{xy + 5}{x^2 + 2y^2}}{\frac{1}{x^2 + 2(2)^2}} \right] = \lim_{x \to \infty} \left[\frac{2x + 5}{x^2 + 8} \right]$$

$$= \lim_{x \to \infty} \left[\frac{x(2) + 5}{x^2 + 2(2)^2} \right] = \lim_{x \to \infty} \left[\frac{2x + 5}{x^2 + 8} \right]$$

$$= \lim_{x \to \infty} \left[\frac{x(2 + 5/x)}{x^2 (1 + 8/x^2)} \right] = \lim_{x \to \infty} \left[\frac{2 + 5/x}{x(1 + 8/x^2)} \right]$$

$$= \frac{2 + 5/\infty}{\infty} = \frac{2 + 0}{\infty(1 + 0)} = \frac{2}{\infty} = 0$$

(2) If
$$f(x,y) = \log \sqrt{x^2 + y^2}$$
, show that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$.

501: Given
$$f(x,y) = \log \sqrt{x^2 + y^2} = \log (x^2 + y^2)^2 = \frac{1}{2} \log (x^2 + y^2)$$
.

$$\Rightarrow f(x,y) = \frac{1}{2} \log(x^2 + y^2)$$

$$\frac{\partial \frac{1}{2}}{\partial x} = \frac{1}{2} \frac{1}{x^2 + y^2} \cdot 2x = \frac{x}{x^2 + y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{(x^2 + y^2) \cdot 1 - x(2x)}{(x^2 + y^2)^2} = \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2}$$

$$\frac{\partial^2 L}{\partial x^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} - 0$$

$$\frac{\partial f}{\partial y} = \frac{1}{2} \frac{1}{\chi^2 + y^2} \cdot 2y = \frac{y}{\chi^2 + y^2}$$

$$\frac{3^{2}}{3y^{2}} = \frac{(x^{2}+y^{2}) \cdot 1 - y(2y)}{(x^{2}+y^{2})^{2}} = \frac{x^{2}+y^{2}-2y^{2}}{(x^{2}+y^{2})^{2}}$$

$$\frac{3^{2}}{3y^{2}} = \frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{2}} - 2$$

$$0 + 2 \Rightarrow \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} + \frac{x^2 - y^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2 + x^2 - y^2}{(x^2 + y^2)^2} = 0$$

$$u = x \qquad v = x^2 + y^2$$

$$u' = 1 \qquad v' = 2x$$

$$d(u) = vu' - uv'$$

$$v^2$$

$$u = y$$
 $v = x^2 + y^2$
 $u' = 1$ $v' = 2y$

$$= \frac{y^2 - x^2 + x^2 - y^2}{\left(x^2 + y^2\right)^2} = 0$$

 $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$

We know that
$$r = \sqrt{x^2 + y^2} + \theta = \tan^{-1}\left(\frac{y}{x}\right)$$

$$\Rightarrow r = \left(x^2 + y^2\right)^{1/2} + \theta = \tan^{-1}\left(\frac{y}{x}\right)$$

(iii)
$$\frac{\partial r}{\partial x} = \frac{1}{2} (x^2 + y^2)^{\frac{1}{2} - 1} \cdot 2x = x (x^2 + y^2)^{-\frac{1}{2}} = \frac{x}{(x^2 + y^2)^{\frac{1}{2}}} = \frac{x}{\sqrt{x^2 + y^2}}$$

$$(iv) \frac{\partial \Phi}{\partial y} = \frac{1}{1 + \left(\frac{y}{x}\right)^2} \cdot \frac{1}{x} = \frac{1}{\frac{x^2 + y^2}{x^2}} \cdot \frac{1}{x}$$
$$= \frac{x^2}{x^2 + y^2} \cdot \frac{1}{x} = \frac{x}{x^2 + y^2}$$

Find du in terms of t, if
$$u=x^3+y^3$$
 where $x=at^2$, $y=2at$.

501. Given
$$u=x^3+y^3$$
, $x=at^2$, $y=2at$

$$\therefore u = (at^2)^3 + (2at)^3 = a^3t^6 + 8a^3t^3$$

$$\frac{du}{dt} = a^{3} 6t^{5} + 8a^{3} 3t^{2} = 6a^{3} t^{5} + 24a^{3} t^{2} = 6a^{3} (t^{5} + 4t^{2}) = 6a^{3} t^{2} (t^{3} + 4)$$

Euler's theorem on homogeneous function:

If u is a homogeneous function of degree n in x & y, then x du + y du = nu.

(Hw) If
$$u = (x-y)(y-z)(z-x)$$
, then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

(5) If
$$u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$$
, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$.

Sol: Given
$$u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$$

$$\Rightarrow \tan u = \frac{x^3 + y^3}{x - y} = \frac{1}{x}(x, y)$$

$$\frac{1}{1+x-1} = \frac{(1+x)^3+(1+y)^3}{1+x-1} = \frac{1}{1+x-1} =$$

if is a homogeneous function of degree 2 in x & y.

Here & = tanu

$$\frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \tan u \times \frac{1}{\sec^2 u} = 2 \frac{\sin u}{\cos u} \times \cos^2 u = 2 \sin u \cos u = \sin 2u$$

$$2. \times \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = sinzu$$

(1.0) If
$$u = sin^{-1}\left(\frac{x^3 - y^3}{x + y}\right)$$
, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \tan u$.

2 If
$$u = \cos^{-1}\left(\frac{x+y}{\sqrt{x+y}}\right)$$
, then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = -\frac{1}{2}$ when

(b) Verify the Euler's theorem for the function u=x2+y2+2xy.

$$\frac{LHS}{\partial x} = 2x + 2y , \frac{\partial u}{\partial y} = 2y + 2x$$

$$\frac{\partial y}{\partial x} = 2x^{2} + y \frac{\partial y}{\partial y} = x(2x + 2y) + y(2y + 2x) = 2x^{2} + 2xy + 2y^{2} + 2xy$$

$$= 2x^{2} + 2y^{2} + 4xy$$

$$2. \times \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2x^2 + 2y^2 + 4xy - 0$$

.. u is a homogeneous function of degree 2 in x & y.

$$nu = 2(x^2 + y^2 + 2xy) = 2x^2 + 2y^2 + 4xy - 2$$

From $0 + 2$, $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$

Definition:

A function f(x,y) is said to be a homogeneous function of degree n in x x y, if f(tx, ty)=t" f(x,y) for any positive t.

50! Given
$$u = \sin^{-1}\left(\frac{x + 2y + 3z}{\sqrt{x^2 + y^2 + z^2}}\right) \Rightarrow \sin u = \frac{x + 2y + 3z}{\sqrt{x^2 + y^2 + z^2}} = \frac{1}{2}(x, y, z)$$

$$\frac{1}{\sqrt{(\pm x)^8 + (\pm y)^8 + (\pm z)^8}} = \frac{\pm (x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm y)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm y)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm y)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm y)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm y)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm y)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm y)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm y)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm y)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8 + (\pm z)^8}} = \pm \frac{(\pm x + 2y + 3z)}{\pm \sqrt{(\pm x)^8 + (\pm z)^8 + (\pm z)^8 + (\pm z)^8}}$$

$$= f_{-3} \int (x', \beta', z)$$

: . . is a homogeneous function of degree (-3) in x, y & z.

: By Euler's theorem, we get

Here
$$\frac{1}{4} = \sin u$$
 $\frac{\partial f}{\partial x} = \cos u \frac{\partial u}{\partial x}$
 $\frac{\partial f}{\partial y} = \cos u \frac{\partial u}{\partial y}$
 $\frac{\partial f}{\partial z} = \cos u \frac{\partial u}{\partial z}$
 $\frac{\partial f}{\partial z} = \cos u \frac{\partial u}{\partial z}$
 $\frac{\partial f}{\partial z} = \cos u \frac{\partial u}{\partial z}$

Subal. @ In O,

$$3ubsl.$$
 ② In ①,
 $x cosu \frac{\partial u}{\partial x} + y cosu \frac{\partial u}{\partial y} + z cosu \frac{\partial u}{\partial z} = -3 sinu$

$$\Rightarrow \times \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = \frac{-3 \sin u}{\cos u} = -3 \tan u$$

$$\Rightarrow \times \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} + 3 \tan u = 0$$

(i)
$$x^{2} \frac{du}{dx} + y \frac{du}{dx} = \frac{1}{2} \frac{du}{dx}$$

(ii) $x^{2} \frac{du}{dx} + y \frac{d$

$$\frac{\partial^{2}u}{\partial x \partial y} + y \frac{\partial^{2}u}{\partial y^{2}} + \frac{\partial u}{\partial y} \cdot 1 = \frac{1}{2} \operatorname{sec}^{2}u \frac{\partial u}{\partial y}$$

$$\frac{\partial^{2}u}{\partial x \partial y} + y \frac{\partial^{2}u}{\partial y^{2}} = \frac{1}{2} \operatorname{sec}^{2}u \frac{\partial u}{\partial y} - \frac{\partial u}{\partial y} = \frac{\partial u}{\partial y} \left(\frac{1}{2} \operatorname{sec}^{2}u - 1 \right) - 5$$

$$\frac{\partial^{2}u}{\partial x \partial y} + y \frac{\partial^{2}u}{\partial y^{2}} + xy \frac{\partial^{2}u}{\partial x \partial y} + xy \frac{\partial^{2}u}{\partial x \partial y} + y^{2} \frac{\partial^{2}u}{\partial y^{2}} = x \frac{\partial u}{\partial x} \left(\frac{1}{2} \operatorname{sec}^{2}u - 1 \right) + y \frac{\partial u}{\partial y} \left(\frac{1}{2} \operatorname{sec}^{2}u - 1 \right)$$

$$\frac{\partial^{2}u}{\partial x^{2}} + 2xy \frac{\partial^{2}u}{\partial x \partial y} + y^{2} \frac{\partial^{2}u}{\partial y^{2}} = \left(\frac{1}{2} \operatorname{sec}^{2}u - 1 \right) \left(x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \right)$$

$$= \left(\frac{1}{2} \operatorname{sec}^{2}u - 1 \right) \frac{1}{2} \operatorname{Ianu} = \left(\frac{1 - 2\cos^{2}u}{2\cos^{2}u} \right) \frac{1}{2} \frac{\sin u}{\cos u}$$

$$= -\left(\frac{2\cos^{2}u}{2\cos^{2}u} \right) \frac{1}{2} \frac{\sin u}{\cos u}$$

$$= -\left(\frac{\sin u \cos 2u}{4\cos^{2}u} \right)$$

$$= \cos 2u$$

(10) If
$$u=(x-y)$$
 if $(\frac{y}{x})$, then find $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.

Sol: Given $u=(x-y)$ if $(\frac{y}{x})$
 $u(tx, ty) = (tx-ty)$ if $(\frac{ty}{tx}) = t(x-y)$ if $(\frac{y}{x}) = t(x, y)$
 $u(tx, ty) = (tx-ty)$ if $(\frac{ty}{tx}) = t(x-y)$ if $(\frac{y}{x}) = t(x, y)$
 $u(tx, ty) = (tx-ty)$ if $(\frac{ty}{tx}) = t(x-y)$ if $(\frac{y}{x}) = t(x, y)$
 $u(tx, ty) = (tx-ty)$ if $(\frac{ty}{tx}) = t(x-y)$ if $(\frac{y}{x}) = t(x, y)$
 $u(tx, ty) = (tx-ty)$ if $(\frac{ty}{tx}) = t(x-y)$ if $(\frac{y}{x}) = t(x, y)$
 $u(tx, ty) = (tx-ty)$ if $(\frac{y}{tx}) = t(x-y)$ if $(\frac{y}{x}) = t(x-y)$ if $(\frac{y}{x})$

$$\frac{\partial x^2}{\partial x^2} = \frac{\partial x \partial y}{\partial x \partial y} = \frac{\partial y}{\partial x}$$
Then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{3}{2}u$.

2 If $u = \cos^{-1} \frac{x}{y} + \tan^{-1} \frac{y}{x}$, then prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$.

3 If $u = \sin^{-1} \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} - \sqrt{y}}$, then (i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$.

(ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$.

Jacobians:

(1) If x=rose & y=rsine, then find
$$\frac{\partial(x,y)}{\partial(r,e)}$$
.

Sol: Griven x=ruso, y=rsino

$$\frac{\partial x}{\partial x} = \omega x \theta \qquad \frac{\partial y}{\partial x} = x \sin \theta$$

$$\frac{\partial x}{\partial \theta} = -x\sin\theta$$

$$\frac{\partial x}{\partial \theta} = -r \sin \theta$$

$$\frac{\partial x}{\partial \theta} = \frac{\partial x}{\partial \tau} \frac{\partial x}{\partial \theta} = \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} = \frac{\partial x$$

$$= \gamma (\omega s^2 + sin^2 \theta) = \gamma (:\omega s^2 \theta + sin^2 \theta = 1)$$

7

(2) If
$$x=uv = y = \frac{u}{v}$$
 then $\frac{\partial(x,y)}{\partial(u,v)}$.

$$\frac{\partial x}{\partial x} = 4$$
 $\frac{\partial u}{\partial y} = \frac{v}{v}$

$$\frac{\partial x}{\partial r} = u \qquad \frac{\partial y}{\partial r} = u(-1)r^{-1-1} = -ur^{-2} = -\frac{u}{r^2}$$

$$\frac{\partial(\alpha'\lambda)}{\partial(x'\lambda)} = \begin{vmatrix} \frac{\partial\alpha}{\partial x} & \frac{\partial\lambda}{\partial x} \\ \frac{\partial\alpha}{\partial x} & \frac{\partial\lambda}{\partial x} \end{vmatrix} = \begin{vmatrix} \lambda & \frac{\lambda_5}{\lambda_5} \\ \lambda & \frac{\lambda_5}{\lambda_5} \end{vmatrix} = \lambda(\frac{\lambda_5}{\lambda_5}) - \alpha(\frac{\lambda_5}{\lambda_5})$$

$$= \frac{u}{v} - \frac{u}{v} = \frac{-2u}{v}$$

AND If x=u2-v2, y= 2ux find the Jacobian of x, y with respect to u. & v.

[Hint: 2(x,y)]

(13) State the properties of Jocobians.

501: 1) If us & are the functions of x & y, then

$$\frac{g(x'A)}{g(x'A)} \times \frac{g(x'A)}{g(x'A)} = 1.$$

2 If u, v are functions of x, y & x, y are functions of r, s then $\frac{\partial(u,v)}{\partial(x,y)} \frac{\partial(x,y)}{\partial(x,s)} = \frac{\partial(u,v)}{\partial(x,s)}$

3 If u,v,w are functionally dependent functions of three independent variables x,y,z then $\frac{\partial(u,v,w)}{\partial(x,y,z)}=0$.

(4) If
$$u=2xy$$
, $v=x^2-y^2$ & $x=rcos\theta$, $y=rsin\theta$. Evaluate $\frac{\partial(u,v)}{\partial(r,\theta)}$, $\frac{\partial u}{\partial r}$ Given $u=2xy$, $v=x^2-y^2$, $x=rcos\theta$, $y=rsin\theta$

$$\frac{g(x, \theta)}{g(x', \phi)} = \frac{g(x', \phi)}{g(x', \phi)} \cdot \frac{g(x', \phi)}{g(x', \phi)} = \begin{vmatrix} \frac{9x}{9x} & \frac{9A}{9A} \\ \frac{9A}{9x} & \frac{9A}{9x} \end{vmatrix} = -5A \begin{vmatrix} \frac{9x}{9x} & \frac{9A}{9x} \\ \frac{9x}{9x} & \frac{9A}{9x} \end{vmatrix} = -5A \begin{vmatrix} \frac{9x}{9x} & \frac{9A}{9x} \\ \frac{9x}{9x} & \frac{9A}{9x} \end{vmatrix} = -5A \begin{vmatrix} \frac{9x}{9x} & \frac{9A}{9x} \\ \frac{9x}{9x} & \frac{9A}{9x} \end{vmatrix} = -5A \begin{vmatrix} \frac{9x}{9x} & \frac{9A}{9x} \\ \frac{9x}{9x} & \frac{9A}{9x} \end{vmatrix} = -5A \begin{vmatrix} \frac{9x}{9x} & \frac{9A}{9x} \\ \frac{9x}{9x} & \frac{9A}{9x} \end{vmatrix} = -5A \begin{vmatrix} \frac{9x}{9x} & \frac{9A}{9x} \\ \frac{9x}{9x} & \frac{9A}{9x} \end{vmatrix} = -5A \begin{vmatrix} \frac{9x}{9x} & \frac{9A}{9x} \\ \frac{9x}{9x} & \frac{9A}{9x} \end{vmatrix}$$

$$= \begin{vmatrix} 2y & 2x \\ 2x & -2y \end{vmatrix} \cdot \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix}$$
$$= \left(-4y^2 - 4x^2\right) \left(r \cos^2 \theta + r \sin^2 \theta\right)$$

$$= (-4y^{2} - 4x^{2}) (r\omega x^{2} + rsin^{2})$$

$$= -4(x^{2} + y^{2}) r (\omega x^{2} + rsin^{2} + y^{2}) r (c + w^{2} + y^{2}) r (c + w^{2} + y^{2}) r$$

$$= -4r^{3} (c + x^{2} + y^{2} + r^{2})$$

$$\frac{\partial u}{\partial x} = 1 \qquad \frac{\partial v}{\partial x} = 1 \qquad \frac{\partial w}{\partial x} = 2x - 2y$$

$$\frac{\partial u}{\partial x} = -1 \qquad \frac{\partial w}{\partial x} = 2x - 2y$$

$$\frac{\partial x}{\partial x} = -1$$

$$\frac{\partial x}{\partial x}$$

$$= 1 \left(-1(2z - 2y) - 1(2y - 2z) \right) - 1(2z - 2y - 2x) - 1(2y - 2z + 2x)$$

$$= -2z + 2y - 2y + 2z - 2z + 2y + 2x - 2y + 2z - 2x$$

.. u, v x w are functionally dependent.

$$u+v=x+y-z+x-y+z=2x \Rightarrow u+v=2x - 0$$

$$u-v=x+y-z-(x-y+z)=x+y-z-x+y-z=2y-2z$$

$$\Rightarrow u-v=2y-2z - 2$$

$$\Rightarrow 2u^{2} + 2v^{2} = 4w \Rightarrow u^{2} + v^{2} = 2w$$

Him) Find the Jacobian of
$$y_1, y_2, y_3$$
 with respect to x_1, x_2, x_3 , if $y_1 = \frac{x_2x_3}{x_1}$, $y_2 = \frac{x_3x_1}{x_2}$, $y_3 = \frac{x_1x_2}{x_3}$.

The Jacobian
$$\frac{\chi_2}{\partial(x,y,z)}$$
 of the transformation $\chi=r\sin\theta\cos\phi$,

3) Prove u=x+y+z, v=xy+yz+zx, w=x²+y²+z² are functionally dependent. Find the relationship between them.

Find the relationship.

(b) For the given function
$$z = tan^{-1} \left(\frac{x}{y} \right) - (xy)$$
, verify whether the statement $d\left(\frac{u}{z} \right) = \frac{yu' - uv'}{y^2}$ $d\left(\frac{u}{z} \right) = \frac{yu' - uv'}{y^2}$ $d\left(\frac{u}{z} \right) = \frac{yu' - uv'}{y^2}$ $d\left(\frac{u}{z} \right) = \frac{1}{1+x^2}$

$$\frac{1}{2} \frac{\partial x}{\partial y} = \frac{1}{1 + (\frac{x}{y})^2} \times (\frac{-1}{y^2}) - x = \frac{y^2}{y^2 + x^2} \cdot \frac{-x}{y^2} - x = \frac{-x}{x^2 + y^2} - x$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{(x^2 + y^2)(-1) - (-x)2x}{(x^2 + y^2)^2} - 1 = \frac{-x^2 - y^2 + 2x^2}{(x^2 + y^2)^2} - 1 = \frac{x^2 - y^2}{(x^2 + y^2)^2} -$$

$$\frac{\text{RHS}}{\partial x} = \frac{1}{1 + \left(\frac{x}{y}\right)^2} \cdot \frac{1}{y} - y = \frac{y^2}{y^2 + x^2} \cdot \frac{1}{y} - y = \frac{y}{x^2 + y^2} - y$$

$$\frac{\partial^{2}z}{\partial y \partial x} = \frac{(x^{2}+y^{2}) \cdot 1 - y(2y)}{(x^{2}+y^{2})^{2}} - 1 = \frac{x^{2}+y^{2}-2y^{2}}{(x^{2}+y^{2})^{2}} - 1 = \frac{x^{2}-y^{2}}{(x^{2}+y^{2})^{2}} - 1 = \frac{x^{2}-y^{2}}{(x^{2}+y^{2})^{2}}$$

From
$$0 \times 2$$
, $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$

(10)

(17) If
$$u = (x^2 + y^2 + z^2)^{-1/2}$$
 then find the value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$.

Sol: Given $u = (x^2 + y^2 + z^2)^{-1/2}$.

 $\frac{\partial u}{\partial x} = -\frac{1}{2}(x^2 + y^2 + z^2)^{-1/2}$. $2x = -x(x^2 + y^2 + z^2)^{-3/2}$.

 $\frac{\partial^2 u}{\partial x^2} = -\left[x(-\frac{3}{2})(x^2 + y^2 + z^2)^{-3/2-1}(2x) + (x^2 + y^2 + z^2)^{-3/2-1}\right]$
 $= 3x^2(x^2 + y^2 + z^2)^{-5/2} - (x^2 + y^2 + z^2)^{-3/2}$ — (1)

Similarly,

 $\frac{\partial^2 u}{\partial y^2} = 3y^2(x^2 + y^2 + z^2)^{-5/2} - (x^2 + y^2 + z^2)^{-3/2}$ — (2)

 $\frac{\partial^2 u}{\partial y^2} = 3z^2(x^2 + y^2 + z^2)^{-5/2} - (x^2 + y^2 + z^2)^{-3/2}$ — (3)

 $\frac{\partial^2 u}{\partial z^2} = 3z^2(x^2 + y^2 + z^2)^{-5/2} - (x^2 + y^2 + z^2)^{-5/2} = 3(x^2 + y^2 + z^2)^{-5/2}(x^2 + y^2 + z^2)^{-5/2}$

$$\frac{\partial u}{\partial z^{2}} = 3z^{2} \left(x + y^{2} + z^{2}\right) - (x + y^{2} + z^{2}) - (x^{2} + y^{2} + z^{2}) - 3\left(x^{2} + y^{2} + z^{2}\right)^{-3}/2$$

$$(1) + (2) + (3) \Rightarrow \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}} = 3\left(x^{2} + y^{2} + z^{2}\right)^{-5/2} \left(x^{2} + y^{2} + z^{2}\right) - 3\left(x^{2} + y^{2} + z^{2}\right)^{-3}/2$$

$$= 3\left(x^{2} + y^{2} + z^{2}\right)^{-3/2} - 3\left(x^{2} + y^{2} + z^{2}\right)^{-3/2} = 0$$

$$\therefore \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}} = 0$$

$$\therefore \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}} = 0$$

(A) (18) If $u = \sqrt{\frac{y-x}{xy}}$, $\frac{z-x}{xz}$, $\frac{z-x}{yz}$, $\frac{z-x}{yz}$.

Sol: Given $u = \sqrt{\frac{y-x}{xy}}$, $\frac{z-x}{xz}$

Let $a = \frac{y-x}{xy}$, $b = \frac{z-x}{xz}$ u = f(a, b)

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial a} \cdot \frac{\partial a}{\partial x} + \frac{\partial u}{\partial b} \cdot \frac{\partial b}{\partial x}$$
$$= \frac{\partial u}{\partial a} \cdot \frac{-1}{x^2} + \frac{\partial u}{\partial b} \cdot \frac{-1}{x^2}$$

$$\frac{\partial u}{\partial x} = -\frac{1}{x^2} \frac{\partial u}{\partial a} - \frac{1}{x^2} \frac{\partial u}{\partial b}$$

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial a}, \frac{\partial a}{\partial y} = \frac{\partial u}{\partial a} \cdot \frac{1}{x} \left[\frac{y(1) - (y - x) \cdot 1}{y^2} \right]$$

$$\frac{\partial a}{\partial x} = \frac{1}{y} \left[\frac{x(-1) - (y - x) \cdot 1}{x^2} \right]$$

$$= \frac{1}{y} \left[-\frac{x - y + x}{x^2} \right] = \frac{1}{y} \left(-\frac{y}{x^2} \right)$$

$$\frac{\partial a}{\partial x} = \frac{-1}{x^2}$$

$$\frac{\partial b}{\partial x} = \frac{1}{z} \left[\frac{x(-1) - (z - x) \cdot 1}{x^2} \right]$$

$$= \frac{1}{z} \left[-\frac{x - z + x}{x^2} \right] = \frac{-1}{x^2}$$

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial a} \cdot \frac{1}{x} \left[\frac{y - y + x}{y^2} \right] = \frac{1}{y^2} \frac{\partial u}{\partial a}$$

$$\frac{\partial u}{\partial z} = \frac{\partial u}{\partial b} \cdot \frac{\partial b}{\partial z} = \frac{\partial u}{\partial b} \cdot \frac{1}{x} \left[\frac{z(1) - (z - x) \cdot 1}{z^2} \right]$$

$$= \frac{\partial u}{\partial b} \cdot \frac{1}{x} \left[\frac{z - z + x}{z^2} \right] = \frac{1}{z^2} \frac{\partial u}{\partial b}$$

$$\therefore x^{2} \frac{\partial u}{\partial x} + y^{2} \frac{\partial u}{\partial y} + z^{2} \frac{\partial u}{\partial z} = -\frac{\partial u}{\partial a} - \frac{\partial u}{\partial b} + \frac{\partial u}{\partial a} + \frac{\partial u}{\partial b} = 0$$

Sol: Given
$$u = f(2x-3y, 3y-4z, 4z-2x)$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial a} \cdot \frac{\partial a}{\partial x} + \frac{\partial u}{\partial c} \cdot \frac{\partial c}{\partial x} = 2 \frac{\partial u}{\partial a} - 2 \frac{\partial u}{\partial c}$$

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial a} \cdot \frac{\partial y}{\partial a} + \frac{\partial u}{\partial b} \cdot \frac{\partial y}{\partial b} = -3\frac{\partial u}{\partial a} + 3\frac{\partial u}{\partial b}$$

$$\frac{\partial u}{\partial z} = \frac{\partial b}{\partial u} \cdot \frac{\partial z}{\partial b} + \frac{\partial c}{\partial u} \cdot \frac{\partial z}{\partial c} = -4 \frac{\partial b}{\partial u} + 4 \frac{\partial c}{\partial u}$$

$$\frac{\partial a}{\partial x} = 2, \frac{\partial c}{\partial x} = -2$$

$$\frac{\partial a}{\partial y} = -3, \frac{\partial b}{\partial y} = 3$$

$$\frac{\partial b}{\partial z} = -4, \frac{\partial c}{\partial z} = 4$$

$$\frac{1}{2} \frac{\partial x}{\partial u} + \frac{1}{3} \frac{\partial y}{\partial u} + \frac{1}{4} \frac{\partial z}{\partial u} = \frac{\partial u}{\partial u} - \frac{\partial u}{\partial u} - \frac{\partial u}{\partial u} + \frac{\partial b}{\partial u} - \frac{\partial b}{\partial u} + \frac{\partial c}{\partial u} = 0$$

(A) Find
$$\frac{dy}{dx}$$
, if $x^y+y^x=c$, where c is a constant. $\frac{d}{dx}(a^x)=a^x\log a$

$$\frac{\partial x}{\partial x} = 4x^{4-1} + 4x \log 4$$

$$\frac{\partial x}{\partial y} = -\frac{\partial x}{\partial x} = -\left(\frac{x^{3} \log x + x^{3} x^{-1}}{3x^{3} \log x + x^{3} x^{-1}}\right)$$

(H.D) If u= f(y-z, z-x, x-y), show that
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$$
.

(2) If
$$g(x,y) = \psi(u,v)$$
 where $u = x^2 - y^2$ & $v = 2xy$, then prove that
$$\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = \psi(x^2 + y^2) \left[\frac{\partial^2 \psi}{\partial u^2} + \frac{\partial^2 \psi}{\partial v^2} \right].$$

$$\frac{\partial x^2}{\partial x^2} + \frac{\partial y^2}{\partial y^2} = 4(x + y^2) \left[\frac{\partial u^2}{\partial u^2} + \frac{\partial y^2}{\partial v^2} \right].$$

$$\frac{\partial u}{\partial x} = 2x \qquad \frac{\partial v}{\partial x} = 2y$$

$$\frac{\partial u}{\partial y} = -2y$$
 $\frac{\partial y}{\partial y} = 2x$

$$\frac{\partial x}{\partial \theta} = \frac{\partial n}{\partial \phi} \cdot \frac{\partial x}{\partial n} + \frac{\partial x}{\partial \phi} \cdot \frac{\partial x}{\partial r}$$

$$\frac{\partial y}{\partial x} = 2x \frac{\partial u}{\partial u} + 2y \frac{\partial v}{\partial v}$$

$$\frac{9x}{9} = 5x \frac{9n}{9} + 54 \frac{9x}{9}$$

$$\frac{\partial a}{\partial y} = \frac{\partial a}{\partial y} \cdot \frac{\partial a}{\partial y} + \frac{\partial a}{\partial y} \cdot \frac{\partial a}{\partial y}$$

$$\frac{\partial g}{\partial y} = -2y \frac{\partial x}{\partial u} + 2x \frac{\partial x}{\partial v}$$

$$\frac{\partial \lambda}{\partial x} = -5\lambda \frac{\partial x}{\partial y} + 5x \frac{\partial x}{\partial y}$$

$$\frac{\partial^2 \theta}{\partial x^2} = \frac{\partial x}{\partial x} \left(\frac{\partial x}{\partial x} \right) = \left(5x \frac{\partial n}{\partial x} + 5A \frac{\partial x}{\partial x} \right) \left(5x \frac{\partial n}{\partial x} + 5A \frac{\partial x}{\partial x} \right)$$

$$\frac{\partial^2 g}{\partial x^2} = 4x^2 \frac{\partial^2 \psi}{\partial u^2} + 4xy \frac{\partial^2 \psi}{\partial u \partial v} + 4xy \frac{\partial^2 \psi}{\partial v \partial u} + 4y^2 \frac{\partial^2 \psi}{\partial v^2} - 0$$

$$\frac{\partial^2 y}{\partial y^2} = \frac{\partial y}{\partial y} \left(\frac{\partial y}{\partial y} \right) = \left(-2y \frac{\partial u}{\partial u} + 2x \frac{\partial v}{\partial v} \right) \left(-2y \frac{\partial u}{\partial u} + 2x \frac{\partial v}{\partial v} \right)$$

$$\frac{\partial^2 g}{\partial y^2} = 4y^2 \frac{\partial^2 \psi}{\partial u^2} - 4xy \frac{\partial^2 \psi}{\partial u \partial v} - 4xy \frac{\partial^2 \psi}{\partial v \partial u} + 4x^2 \frac{\partial^2 \psi}{\partial v^2} - 2$$

$$\frac{\partial y^{2}}{\partial y^{2}} + \frac{\partial^{2} y}{\partial x^{2}} + \frac{\partial^{2} y}{\partial y^{2}} = 4x^{2} \frac{\partial^{2} y}{\partial u^{2}} + 4y^{2} \frac{\partial^{2} y}{\partial v^{2}} + 4y^{2} \frac{\partial^{2} y}{\partial u^{2}} + 4x^{2} \frac{\partial^{2} y}{\partial u^{2}} + 4x^{2} \frac{\partial^{2} y}{\partial v^{2}} + 4x^{2} \frac{\partial^{2} y}{\partial u^{2}} + 4x^{2} \frac{\partial^{2} y}{\partial v^{2}} + 4x^{2$$

$$= \left(4x^{2} + 4y^{2}\right)\left(\frac{3^{2}y}{3u^{2}} + \frac{3^{2}y}{3y^{2}}\right)$$

$$\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = 4(x^2 + y^2) \left(\frac{\partial^2 y}{\partial u^2} + \frac{\partial^2 y}{\partial v^2} \right)$$

22) If
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
, show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x + y + z)^2}$.

$$\frac{\partial u}{\partial x} = \frac{1}{x^3 + y^3 + z^3 - 3xyz} \left(3x^2 - 3yz \right) = \frac{3(x^2 - yz)}{x^3 + y^3 + z^3 - 3xyz}$$

$$\frac{\partial u}{\partial y} = \frac{3(y^2 - xz)}{x^3 + y^3 + z^3 - 3xyz} & \frac{\partial u}{\partial z} = \frac{3(z^2 - xy)}{x^3 + y^3 + z^3 - 3xyz}$$

$$\frac{3u}{3x} + \frac{3u}{3y} + \frac{3u}{3z} = \frac{3(x^2 - yz + y^2 - xz + z^2 - xy)}{x^3 + y^3 + z^3 - 3xyz}$$

$$= 3(x^{2}+y^{2}+z^{2}-xy-yz-xz) = \frac{3}{x+y+z}$$

$$(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-xz) = \frac{3}{x+y+z}$$

$$\Rightarrow \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right) u = \frac{3}{x + y + z} = 3(x + y + z)^{-1}$$

$$\frac{\partial}{\partial x} \left(\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right) u \right) = 3 \left(-1 \right) \left(x + y + z \right)^{-1 - 1} \cdot 1 = \frac{-3}{\left(x + y + z \right)^2} - 0$$

Similarly,

$$\frac{\partial}{\partial y} \left(\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right) u \right) = \frac{-3}{(x+y+z)^2} - 2$$

$$\frac{\partial}{\partial z} \left(\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right) u \right) = \frac{-3}{(x+y+z)^2} - 3$$

$$\Rightarrow \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$$

(1) If $z = \frac{1}{2}(x,y)$ where $x = r\cos\theta + y = r\sin\theta$, show that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial x}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2$.

@ If z is a function of x & y & u & + are other two variables, such that u=lx+my, v=ly-mx. Show that

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \left(\left(\left(\frac{1}{2} + m^2 \right) \right) \left(\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} \right).$$

Taylor's series

$$f(x,y) = \frac{1}{(a,b)} + \frac{1}{1!} \left[h_{1x}(a,b) + k_{1y}(a,b) \right]$$

$$+ \frac{1}{2!} \left[h^{2} \int_{xx} (a,b) + 2hk_{1xy}(a,b) + k^{2} \int_{yy} (a,b) \right]$$

$$+ \frac{1}{3!} \left[h^{3} \int_{xxx} (a,b) + 3h^{2}k \int_{xxy} (a,b) + 3hk^{2} \int_{xyy} (a,b) + k^{3} \int_{yy} (a,b) \right]$$

$$+ \frac{1}{3!} \left[h^{3} \int_{xxx} (a,b) + 3h^{2}k \int_{xxy} (a,b) + 3hk^{2} \int_{xyy} (a,b) + k^{3} \int_{yy} (a,b) \right]$$

(P(23) Expand x2y2+2x2y+3xy2 in powers of (x+2) & (y-1) using Taylor's series upto third degree terms.

seru	serus apio mara api			
<u>501:</u>	Function	x = -2, $y = 1$ $(-2,1)$		
	f(x,y)= xy+2xy+3xy	1 2 2 1 2 ()+3(-2)(1) = ++8-6=6		
	$\frac{1}{4} = 2xy^{2} + 4xy + 3y^{2}$	1 0 0 0 1 (1)+4(-2)(1)+3(1)7		
The Cart of the Ca	$\frac{1}{4}y = 2x^2y + 2x^2 + bxy$	$\frac{4}{3} = 2(-2)^{2}(1) + 2(-2)^{2} + 6(-2)(1) = 8 + 8 - 12 = 4$		
	fax = 2y2+4y	$\frac{1}{1+4} = 2(1)^{2} + 4(1) = 2 + 4 = 6$		
A design of	fry = 4xy+4x+6y	4xx = 2(1) + 4(-2) + 6(1) = -8 - 8 + 6 = -10		
	$\frac{1}{4}yy = 2x^2 + 6x$	$\frac{1}{4} = 2(-2)^{2} + 6(-2) = 8 - 12 = -4$		
	1xxx = 0	$f_{XXX} = 0$		
1 A. M	fxxy = 4y+4	fxxy = 4(1)+4=8		
	fxyy=4x+6	$f_{xyy} = 4(-2) + 6 = -8 + 6 = -2$		
	f387 = 0	tyy=0		
	1999	000		

By Taylor's theorem,

By Taylor's Theorem,

$$\frac{1}{2!} \left[h_{x}^{2}(a,b) + \frac{1}{1!} \left[h_{x}^{2}(a,b) + k_{y}^{2}(a,b) + k_{y}^{2}$$

Here a=-2, b=1; h=x-a=x-(-2)=x+2, k=y-b=y-1

$$\frac{1}{2!} \left[(x+2)^{2} (-1) + (y-1)(4) \right] \\
+ \frac{1}{2!} \left[(x+2)^{2} (-1) + 2(x+2)(y-1)(-10) + (y-1)^{2} (-1) \right] \\
+ \frac{1}{3!} \left[(x+2)^{3} (-1) + 3(x+2)^{2} (y-1)(8) + 3(x+2)(y-1)^{2} (-2) + (y-1)^{3} (-2) \right] \\
+ \frac{1}{3!} \left[(x+2)^{3} (-1) + 3(x+2)^{2} (-1) + (y-1)^{2} (-2) + (y-1)^{2} (-2) + (y-1)^{2} (-2) \right] \\
+ \frac{1}{6!} \left[24(x+2)^{2} (y-1) - 6(x+2)(y-1)^{2} \right] + \cdots$$

Obtain the Taylor's series expansion of x3+y3+xy2 in terms of powers of (x-i) & (y-2) up to third degree terms.

(10) Find Taylor's series expansion of function of $f(x) = \sqrt{1+x+y^2}$ in powers of (x-i) & y up to second degree terms.

(P) Obtain the Taylor's series expansion of exsing in terms of powers of x ky upto third degree terms.

[0,0) [x=0, y=0] Function = e sino = ()(0)=0 f(x,y) = exsing fx=e sino=(1)(0) = 0 fx=ex sing Ay = e coso = (1)(1) = 1 = ez cosy 1xx = e sino = (1)(0)=0 fxx = exsing fxy=e coso=(1)(1)=1 fxy = exwsy Ayy = - e sino = - (1)(0) = 0 fyy = -exsing txxx = e sino = (1)(0)=0 fanx = exsing txxy = e°coso = ()(1)=1 faxy = excosy fxyy = -e sino = -(1)(0)=0 fxyy = -exsing fugy = -e coso = -(1)(1)=-1 Tyyy = -excosy

Here a=0, b=0, h=x-a=x-0=x, k=y-b=y-0=y

By laylor's Theorem,
$$f(x,y) = f(a,b) + \frac{1}{1!} \left[h_{1}^{2} x(a,b) + k_{1}^{2} y(a,b) \right]$$

$$+ \frac{1}{2!} \left[h_{1}^{2} x(a,b) + 2hk_{1}^{2} xy(a,b) + k_{1}^{2} yy(a,b) \right]$$

$$+ \frac{1}{3!} \left[h_{1}^{3} x(a,b) + 3h_{1}^{2} k_{1}^{2} xy(a,b) + 3h_{1}^{2} k_{1}^{2} xyy(a,b) + k_{1}^{3} yyy(a,b) \right]$$

$$+ \frac{1}{3!} \left[h_{1}^{3} x(a,b) + 3h_{1}^{2} k_{1}^{2} xyy(a,b) + 3h_{1}^{2} k_{1}^{2} xyy(a,b) + k_{1}^{3} yyy(a,b) \right]$$

$$f(x,y) = 0 + \frac{1}{1!} \left[x(0) + y(1) \right] + \frac{1}{2!} \left[x^{2}(0) + 2xy(1) + y^{2}(0) \right]$$

$$+ \frac{1}{3!} \left[x^{3}(0) + 3x^{2}y(1) + 3xy^{2}(0) + y^{3}(-1) \right] + \cdots$$

$$= y + \frac{1}{2} (2xy) + \frac{1}{6} (3x^{2}y - y^{3}) + \cdots$$

$$= y + xy + \frac{1}{6} (3x^{2}y - y^{3}) + \cdots$$

(25) Expand the function sinxy in powers of x-1 & y- I upto second degree terms, using Taylor's series.

digres	Terms, using lagions	
301:	Function	x=1, y= 1/2
	f(x,y) = sin xy	$\frac{1}{4} = \sin(i)(\sqrt[m]{2}) = \sin(\sqrt[m]{2} = 1)$
	tx = conxy.y	1/2 = cox(i)(T/2). T/2 = cox T/2. T/2 = 0. T/2 = 0
-	fy = wxy. x	= cos()(T/2). 1 = cosT/2 = 0
	Jxx= A(-vinxA). A	$\frac{1}{4} = -\left(\frac{\pi}{2}\right)^2 \sin(i)\left(\frac{\pi}{2}\right) = -\frac{\pi^2}{4} \sin(\frac{\pi}{2}) = -\frac{\pi^2}{4}$
	= -yesinxy	12/17 ()(T/ sin()(T/2)
	fry = coxy.1 +y (-sinxy).x	+xy= 000 T/2 - T/2 sin T/2 = 0- T/1) = - T/2
	= coxxy-xyxinxy	$\frac{1}{4} = -(1)^2 \sin(1)(\frac{\pi}{2}) = -\sin(\frac{\pi}{2}) = -1$
	tyy = x (-sinxy).x	449
	= -x sinxy	

By Taylor's theorem,
$$f(x,y) = f(a,b) + \frac{1}{1!} [hf_x(a,b) + kf_y(a,b)]$$

 $k = x - a = x - 1$
 $k = y - b = y - \frac{\pi}{2}$
 $k = y - b = y - \frac{\pi}{2}$

$$\frac{1}{2!} \left[(x-1)(0) + (y-\frac{\pi}{2})(0) \right] \\
+ \frac{1}{2!} \left[(x-1)^2 \left(-\frac{\pi^2}{4} \right) + 2(x-1)(y-\frac{\pi}{2}) \left(-\frac{\pi}{2} \right) + \left(y-\frac{\pi}{2} \right)^2 (-1) \right] + \cdots \\
= 1 + \frac{1}{2} \left[-\frac{\pi^2}{4} (x-1)^2 - \pi (x-1) (y-\frac{\pi}{2}) - (y-\frac{\pi}{2})^2 \right] + \cdots$$

(26) Expand exlog(14y) in powers of x & y upto the third degree terms, using Taylor's series.

USIV	19 laylor's series.	
	Function	x=0, y=0
	f(x,y) = ex log(1+y)	f= e° log(1+0) = e° log1 = (1)(0) = 0
		t= e log(1+0) = e log1 = (1)(0)=0
	1/x = ex log(1+y)	$f_{11} = e^{0}(1+0)^{-1} = e^{0}(1)^{-1} = (1)(1) = 1$
	$f_y = e^{x} \cdot \frac{1}{1+y} \cdot 1 = e^{x} (1+y)^{-1}$	Txx = e log(1+0) = e log 1 = (1)(0) = 0
	txx = ex log(1+y)	1 = 2 (1+0) = (1)(1) = 1
	2/12/	$Ayy = -2^{\circ}(1+0)^{-2} = -(1)(1)^{-2} = -1$
	$\frac{1}{4}xy = e^{x(-1)(1+y)^{2}} = -e^{x(1+y)^{2}}$	130 1xxx = 2 log(1+0) = (1)(0) = 0
	txxx = exlog(1+y)	$4xxy = 2^{0}(1+0)^{-1} = (1)(1) = 1$
	txxy = ex(1+y)-1	$\int_{1}^{1} \frac{1}{1+1} dt = -e^{0}(1+0)^{-2} = -(1)(1) = -1$
	$-e^{\chi}(1+\chi)^{-2}$	-2 ^ / >
	$4xyy = -e^{x}(-2)(1+y)^{-3} = 2e^{x}(1+y)^{-3}$	744A

By Taylor's theorem, $f(x,y) = f(a,b) + \frac{1}{1!} \left[h_{4x}(a,b) + k_{4y}(a,b) \right]$ $+ \frac{1}{2!} \left[h_{4xx}^2(a,b) + 2hk f_{xy}(a,b) + k_{4yy}^2(a,b) \right]$ $+ \frac{1}{3!} \left[h_{4xx}^3(a,b) + 3h^2 k_{4xxy}^2(a,b) + 3hk^2 f_{xyy}(a,b) + k_{4yy}^3 f_{yyy}(a,b) \right]$ $+ \cdots$

Here a=0, b=0 h=x-a=x-o=x, k=y-b=y-0=y

$$\frac{1}{1!} \left[x(0) + y(1) \right] + \frac{1}{2!} \left[x^{2}(0) + 2xy(1) + y^{2}(-1) \right]
+ \frac{1}{3!} \left[x^{3}(0) + 3x^{2}y(1) + 3xy^{2}(-1) + y^{3}(2) \right] + \cdots
= y + \frac{1}{2} \left(2xy - y^{2} \right) + \frac{1}{6} \left(3x^{2}y - 3xy^{2} + 2y^{3} \right) + \cdots$$

(H.W) Expand excosy about (0, T/2) upto the third term using Taylor's

② Obtain terms upto the third degree in the Taylor's series expansion of exsing around the point (1, T/2). ③ Expand $\frac{1}{2}(x,y) = e^{xy}$ in Taylor series at (1,1) upto second degree.

Maxima & núnima for functions of two variables:

Definitions:

Extremum value:

fla, b) is said to be an extremum value of f(x,y) if it is either a maximum or a minimum.

Notations: $\frac{\partial x}{\partial x} = 4x$, $\frac{\partial y}{\partial y} = 4y$, $\frac{\partial^2 y}{\partial x^2} = 4xx$, $\frac{\partial x}{\partial y} = 4xy$, $\frac{\partial^2 y}{\partial y^2} = 4yy$

Sufficient conditions:

If tx(a,b)=0, ty(a,b)=0 & txx(a,b)=A, txy(a,b)=B, tyy(a,b)=C,

(i) f(a,b) is maximum value if AC-B2>0 & A<0 (or B<0)

(ii) {(a,b) is minimum value if AC-B2>0 & A>0 (or B>0)

(iii) f(a,b) is not an extremum (saddle) if AC-B2<0 &

(iv) If $AC-B^2=0$, then the test is inconclusive.

Stationary value:

A function f(x,y) is said to be stationary at (a,b) or f(a,b) is said to be a stationary value of f(x,y) if $f_{x}(a,b) = 0$ & ty (a, b) = 0.

Note: Every extremum value is a stationary value but a stationary value need not be an extremum value.

(27) Examine $f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ for extreme values. 24 | -10 -6 | -4 x-6 | x-4 Sol: Given A(x,y) = x3+3xy2-15x2-15y2+72x Ax= 3x2+3x2-30x+72 fy = 6 xy - 304

Stationary points:

$$\frac{1}{4x} = 0$$

$$3x^{2} + 3y^{2} - 30x + 72 = 0 - 0$$

$$\frac{y = 0}{2} \text{ in } 0$$

$$3x^{2} - 30x + 72 = 0 \Rightarrow x^{2} - 10x + 24 = 0$$
$$\Rightarrow (x - b)(x - 4) = 0$$

=> x=4,6

$$4y = 0$$

 $6xy - 30y = 0 \Rightarrow 6y(x - 5) = 0$
 $\Rightarrow y = 0, x = 5$

:. The points are (4,0) & (6,0)

 $75+3y^2-150+72=0 \Rightarrow 3y^2-3=0 \Rightarrow 3y^2=3 \Rightarrow y^2=1 \Rightarrow y=\pm \sqrt{1}=\pm 1$:. The points are (5,1) & (5,-1).

Hence the stationary points are (4,0), (6,0), (5,1) & (5,-1).

Hence the stationary poores
$$A = f_{xx} = 6x - 30 \quad ; B = f_{xy} = 6y \quad ; C = f_{yy} = 6x - 30$$

ーナメメ	,	O o		
	(4,0)	(6,0)	(5,1)	(5,-1)
		6>0	0	0
A=6x-30	-6 <0	0	6	- b
B = 64	0		0	0
C= 6x-30	-6	6	-36<0	-3b ≺o
Ac-B2	36 > 0	36 >0		Saddle point
Conclusion	Maximum	Minimum	Saddle point	Jaggie Pozi
		_		

$$f(4,0) = (4)^3 + 3(4)(0)^2 - 15(4)^2 - 15(0)^2 + 72(4) = 112$$

$$f(6,0) = (6)^3 + 3(6)(0)^2 - 15(6)^2 - 15(0)^2 + 72(6) = 108$$

Hence the maximum value is 112 4 the minimum value is 108.

(128) Find the maxima & nimina of
$$f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$$
.
Sol: Given $f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$.

$$\frac{1}{4}x = 0$$

Substituting 3 in 1,

$$\chi^{3}_{-} \times - \times = 0 \Rightarrow \chi^{3}_{-} 2 \times = 0 \Rightarrow \chi(\chi^{2}_{-} 2) = 0$$

$$\Rightarrow \chi = 0 \quad | \quad \chi^{2}_{-} 2 = 0$$

$$\Rightarrow \chi = 0 \quad | \quad \chi^{2}_{-} 2 = 0$$

$$\Rightarrow \chi = 0 \quad | \quad \chi^{2}_{-} 2 = 0$$

$$\Rightarrow \chi = 0 \quad | \quad \chi^{2}_{-} 2 = 0$$

$$\Rightarrow \chi = 0 \quad | \quad \chi^{2}_{-} 2 = 0$$

$$\Rightarrow \chi = 0 \quad | \quad \chi^{2}_{-} 2 = 0$$

Substituting 4 in 3,

 $\chi=0 \Rightarrow y=0$; $\chi=\sqrt{2} \Rightarrow y=\sqrt{2}$; $\chi=-\sqrt{2} \Rightarrow y=\sqrt{2}$ Hence the stationary points are (0,0), (12,-12) & (-12,12).

			1 ~ ~ ~
	(0,0)	(12, -12)	(-12,12)
A=12x2-4	-4	20>0	20 >0
B= 4	4	4	4
C= 12x -4	-4	20	20
$Ac - R^2$	0	384 ≻0	384 ≻∘
Conclusion	Incondusive	Minimum Value	Minimum value.
			0

 $\frac{1}{4}(\sqrt{2}, -\sqrt{2}) = (\sqrt{2})^{4} + (-\sqrt{2})^{4} - 2(\sqrt{2})^{2} + 4(\sqrt{2})(-\sqrt{2}) - 2(-\sqrt{2})^{2} = 4 + 4 - 4 - 8 - 4 = -8$ $\frac{1}{4(-\sqrt{2}, \sqrt{2})} = (-\sqrt{2})^{4} + (\sqrt{2})^{4} - 2(-\sqrt{2})^{2} + 4(-\sqrt{2})(\sqrt{2}) - 2(\sqrt{2})^{2} = 4 + 4 - 4 - 8 - 4 = -8$ Hence the minimum value is -8.

29) Find the extreme values of
$$4(x,y) = x^3y^2(1-x-y)$$
.

Sol: Given $4(x,y) = x^3y^2(1-x-y) = x^3y^2 - x^4y^2 - x^3y^3$
 $4x = 3x^2y^2 - 4x^3y^2 - 3x^2y^3$
 $4y = 2x^3y - 2x^4y - 3x^3y^2$
 $A = 4xx = 6xy^2 - 12x^2y^2 - 6xy^3$
 $B = 4xy = 6x^2y - 6x^3y - 9x^2y^2$
 $C = 4yy = 2x^3 - 2x^4 - 6x^3y$

Slationary points:

 $4x = 0$
 $\Rightarrow 3x^2y^2 - 4x^3y^2 - 3x^2y^3 = 0$
 $\Rightarrow 2x^3y - 2x^4y - 3x^2y^3 = 0$
 $\Rightarrow x^2y^2(3 - 4x - 3y) = 0$
 $\Rightarrow x^3y(2 - 2x^4y^3) = 0$
 $\Rightarrow x^3y(2 - 2x^4y^3) = 0$

$$\Rightarrow 2x^{3}y - 2x^{4}y - 3x^{3}y^{2} = 0$$

$$\Rightarrow 2x^{3}y - 2x^{4}y - 3x^{3}y^{2} = 0$$

$$\Rightarrow x^{3}y^{2}(3 - 4x - 3y) = 0$$

$$\Rightarrow x = 0, y = 0, 3 - 4x - 3y = 0$$

$$\Rightarrow x = 0, y = 0, 4x + 3y = 3 - 0$$

$$\Rightarrow x = 0, y = 0, 2x + 3y = 2 - 0$$

$$\Rightarrow x = 0, y = 0, 2x + 3y = 2 - 0$$

$$\Rightarrow x = 0, y = 0, 2x + 3y = 2 - 0$$

$$\Rightarrow x = 0, y = 0, 2x + 3y = 2 - 0$$

$$\Rightarrow x = 0, y = 0, 2x + 3y = 2 - 0$$

$$\Rightarrow x = 0, y = 0, 2x + 3y = 2 - 0$$

$$\Rightarrow x = 0, y = 0, 2x + 3y = 2 - 0$$

Substituting x=1/2 in 2, $2(1/2)+3y=2 \Rightarrow 1+3y=2 \Rightarrow 3y=2-1 \Rightarrow 3y=1 \Rightarrow [y=1/3]$ Hence the stationary points are (0,0) & (1/2,1/3).

(0,0)	(½1/3) -1-<0
0	9
0	12
0	-1-8
0	144>0
Inconclusive	Maximum value
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	0

$$f\left(\frac{1}{2}, \frac{1}{3}\right) = \left(\frac{1}{2}\right)^3 \left(\frac{1}{3}\right)^2 \left(1 - \frac{1}{2} - \frac{1}{3}\right) = \frac{1}{8} \times \frac{1}{9} \times \left(\frac{1}{6}\right) = \frac{1}{432}$$

Hence the maximum value is $\frac{1}{432}$.

(3) Dieuss the maximu & neinines of the function \$(x,y) = x3+y3-30xy.

$$\int_{x} = 3x^2 - 3ay$$

Stationary points:

$$0 \Rightarrow y = \frac{x^2}{3} - 3$$

$$\Rightarrow 3y^{2} - 3\alpha x = 0 \Rightarrow y^{2} - \alpha x = 0$$
$$\Rightarrow y^{2} = \alpha x - 2$$

C= + 444 = PA

Substituting (3) in (2),
$$\left(\frac{\chi^{2}}{\alpha}\right)^{2} = \alpha x \Rightarrow \frac{\chi^{4}}{\alpha^{2}} = \alpha x \Rightarrow \frac{\chi^{4}}{\alpha} = \alpha^{3} \Rightarrow \chi^{3} = \alpha^{3}$$

$$\Rightarrow \chi = \alpha \qquad \Rightarrow \chi = \alpha \qquad \Rightarrow \chi = \alpha^{3} \Rightarrow \chi^{3} = \alpha^{3}$$

Substituting 4 in 3, $y = \frac{a^2}{a} = a \Rightarrow y = a$

Hence the stationary point is (a, a).

	(a,a)
A = 6x	ba
B = -3a	-3a
	6a
C = 64	$36a^2 - 9a^2 = 27a^2 > 0$
AC-B	
16 onclusion	The state of the s

24 a>0, then A>0 ⇒ Minimum value at (a,a). If a < 0, then A < 0 => Maximum value at (a,a).

 $f(a,a) = a^3 + a^3 - 3a(a)(a) = 2a^3 - 3a^3 = -a^3$

Hence the maximum or minimum value at (a, a) is -a3.

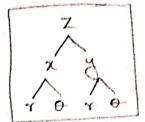
(D) Find the maximum or minimum values of $d(x,y) = 3x^2 - y^2 + x^3$.

(DE) Find the maximum or minimum values of f(x,y) = x+y2+6x+12.

3 Examine x3y2(12-x-y) for extreme values.

4) Find the maxima & minima of xy(a-x-y).

(31) If
$$z = \frac{1}{2}(x,y)$$
 where $x = r\cos\theta + y = r\sin\theta$, show that
$$\frac{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2}{\frac{\partial \partial z}{\partial r}} = \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2}{\frac{\partial z}{\partial r}} = \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2 + \frac{$$



$$\frac{\partial x}{\partial \theta} = -\gamma \sin \theta = -y$$

$$\frac{\partial y}{\partial \theta} = \tau \cos \theta = x$$

$$\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x} = \frac{x}{\gamma} \cdot \frac{\partial z}{\partial x} + \frac{y}{\gamma} \cdot \frac{\partial z}{\partial y}$$

$$\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial \theta} = -y \cdot \frac{\partial z}{\partial x} + x \cdot \frac{\partial z}{\partial y}$$

$$\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial \theta} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial \theta} = -y \cdot \frac{\partial z}{\partial x} + x \cdot \frac{\partial z}{\partial y}$$

$$= \frac{1}{\gamma^2} \left(x^2 \left(\frac{\partial z}{\partial x} \right)^2 + y^2 \left(\frac{\partial z}{\partial y} \right)^2 + 2xyy \cdot \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y} \right)$$

$$= x^2 \left(\frac{\partial z}{\partial y} \right)^2 + y^2 \left(\frac{\partial z}{\partial x} \right)^2 - 2xyy \cdot \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y}$$

$$= x^2 \left(\frac{\partial z}{\partial y} \right)^2 + y^2 \left(\frac{\partial z}{\partial \theta} \right)^2 = \frac{1}{\gamma^2} \left(x^2 \left(\frac{\partial z}{\partial x} \right)^2 + y^2 \left(\frac{\partial z}{\partial y} \right)^2 + 2xyy \cdot \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y} \right)$$

$$= \frac{1}{\gamma^2} \left(x^2 \left(\frac{\partial z}{\partial x} \right)^2 + y^2 \left(\frac{\partial z}{\partial y} \right)^2 + x^2 \left(\frac{\partial z}{\partial y} \right)^2 + y^2 \left(\frac{\partial z}{\partial y}$$

Hence $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial x}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2$

Lagrange's method of undetermined multipliers:

(32) A thin closed rectangular box is to have one edge equal to twice

the other & constant volume 72 m³. Find the least surface area of the box.

Sol: Let x,y,2y be the length, breadth & height of the box respectively.

Surface area = 2xy + 2(y)(2y) + 2(x)(2y) = 2xy + 4y2 + 4xy = 6xy + 4y2 Volume = (x)(y)(2y) = 2xy2 = 72 => xy2 = \frac{72}{2} = 36 -> xy2 = 36 $F = (6xy + 4y^2) + \lambda(xy^2 - 36) = 6xy + 4y^2 + \lambda xy^2 - 36\lambda$

 $F_x = 6y + \lambda y^2$; $F_y = 6x + 8y + 2\lambda xy$

 \Rightarrow 6y+ λ y²= $0 \Rightarrow$ 6y = $-\lambda$ y² $\Rightarrow b = -\lambda y \Rightarrow \frac{b}{y} = -\lambda - 0$ >6x+8y+2xxy=0 > 6x+8y=-2xxy $\Rightarrow 3x + 4y = -\lambda xy \Rightarrow \frac{3x + 4y}{xy} = -\lambda$ $\Rightarrow \frac{3}{7} + \frac{4}{x} = -\lambda - 2$

From ①&②, $\frac{6}{7} = \frac{3}{7} + \frac{4}{x} \Rightarrow \frac{6}{7} - \frac{3}{7} = \frac{4}{x} \Rightarrow \frac{3}{7} = \frac{4}{x}$ $\Rightarrow 3x = 4y \Rightarrow \sqrt{y} = \frac{3}{4}x$

Substituting 3 in (*), $x(\frac{3}{4}x)^{2} = 36 \Rightarrow x(\frac{9}{16}x^{2}) = 36 \Rightarrow \frac{9}{16}x^{3} = 36 \Rightarrow x^{3} = \frac{36 \times 16}{9} = 64 = 4^{3}$

 $\therefore y = \frac{3}{4}(4) = 3 \implies \boxed{y=3}$

: Least surface area = 6xy+4y2 = b(4)(3)+4(3) = 108.

(23) Find the dimensions of the rectangular box without a top of maximum capacity, whose surface area is 108 sq.cm.

301: Let x, y, z be the length, breadth & height of the box. Surface area = xy + 2yz + 2xx = 108 -1

$$\Rightarrow \frac{y+2z}{yz} = \frac{-1}{\lambda}$$

$$\Rightarrow \frac{1}{z} + \frac{2}{y} = \frac{-1}{\lambda} - 2$$

From (2&3),

$$\frac{1}{z} + \frac{2}{y} = \frac{1}{z} + \frac{2}{x}$$

$$\Rightarrow \frac{2}{7} = \frac{2}{x} \Rightarrow 2x = 27$$

$$F_{y=0} = 0$$

$$\Rightarrow xz + \lambda(x+2z) = 0$$

$$\Rightarrow \chi_{Z} + \chi(\chi + 2Z) = 0$$

$$\Rightarrow \chi z = -\lambda(\chi + 2\chi)$$

$$\Rightarrow \frac{\chi z}{\chi + 2\chi} = -\lambda$$

$$\Rightarrow \frac{x+2z}{xz} = \frac{-1}{\lambda}$$

$$\Rightarrow \frac{1}{z} + \frac{2}{x} = -\frac{1}{\lambda} - 3$$

$$\Rightarrow \frac{2y+2x}{xy} = \frac{1}{x}$$

$$\Rightarrow \frac{1}{z} + \frac{2}{x} = -\frac{1}{\lambda} - 3 \Rightarrow \frac{2}{x} + \frac{2}{y} = -\frac{1}{\lambda} - 4$$

d= J(x-x)2+(y-y)2+(z-z)2

From 3&4,

$$\frac{1}{z} + \frac{2}{x} = \frac{2}{x} + \frac{2}{y}$$

$$\Rightarrow \frac{1}{2} = \frac{2}{3}$$

From
$$\textcircled{5} & \textcircled{6}$$
, $x = y = 2z$
 $\therefore \textcircled{0} \Rightarrow 2y + 2yz + 2zx = 108 \Rightarrow (2z)(2z) + 2(2z)z + 2z(2z) = 108$
 $\Rightarrow (2z)(2z) + 2(2z)z + 2z(2z) = 108$

$$\Rightarrow 2y + 2yz + 2zx = 108 \Rightarrow (92)(22)$$

$$\Rightarrow 2y + 2yz + 2zx = 108 \Rightarrow 12z^{2} = 108 \Rightarrow z^{2} = 9 \Rightarrow \boxed{z = 3}$$

$$\Rightarrow 4z^{2} + 4z^{2} + 4z^{2} = 108 \Rightarrow 12z^{2} = 108 \Rightarrow z^{2} = 9 \Rightarrow \boxed{z = 3}$$

Maximum volume = xyz = (6)(6)(3) = 108.

(A) Find the shortest & the longest distances from the point (1,2,-1) to Here x,=1, y,=2, Z,=-1

the sphere x2+y2+ z2= 24.

$$d = \sqrt{(x-1)^2 + (y-2)^2 + (z+1)^2}$$

$$\Rightarrow d^2 = (x-1)^2 + (y-2)^2 + (z+1)^2$$

$$F = (x-1)^{2} + (y-2)^{2} + (z+1)^{2} + \lambda(x^{2}+y^{2}+z^{2}-24)$$

$$F_{x} = 2(x-1) + 2x\lambda$$
; $F_{y} = 2(y-2) + 2y\lambda$

$$F_{x=0}$$

$$2(x-1)+2x\lambda=0$$

$$x-1+x\lambda=0$$

$$x+x\lambda=1$$

$$x(1+\lambda)=1$$

$$x=\frac{1}{1+\lambda}$$
From ①,② &
$$x-4$$

Fy=0

$$2(y-2)+2y\lambda=0$$

$$y-2+y\lambda=0$$

$$y+y\lambda=2$$

$$y(1+\lambda)=2$$

$$\frac{y}{2}=\frac{1}{1+\lambda}$$

$$F_{z=0}$$

$$2(z+1)+2z\lambda=0$$

$$z+1+z\lambda=0$$

$$z+z\lambda=-1$$

$$z(1+\lambda)=-1$$

$$-z=\frac{1}{1+\lambda}$$

From 1, 2 & 3,

$$\chi = \frac{y}{2} = -z \Rightarrow \chi = -z , \quad \frac{y}{2} = -z \Rightarrow \chi = -z , \quad y = -2z$$

$$Z=2 \Rightarrow x=-2$$
, $y=-2(2)=-4$

$$Z=-2 \Rightarrow \chi=2$$
, $y=-2(-2)=4$

Hence the points are (-2,-4,2) + (2,4,-2).

$$d = \sqrt{(-2-1)^2 + (-4-2)^2 + (2+1)^2} = \sqrt{9+36+9} = \sqrt{54} = 3\sqrt{6}$$

$$d = \sqrt{(2-1)^2 + (4-2)^2 + (-2+1)^2} = \sqrt{1+4+1} = \sqrt{6}$$

Hence the shortest & longest distances are To & 3 To respectively.

(35) Find the minimum distance from the point (1,2,0) to the cone Z= x2+41.

$$d = \sqrt{(x-1)^2 + (y-2)^2 + (z-0)^2}$$

$$d^2 = (x-1)^2 + (y-2)^2 + z^2$$

$$F = (x-1)^{2} + (y-2)^{2} + z^{2} + \lambda (z^{2} - x^{2} - y^{2})$$

$$F_{x} = 2(x-1) - 2x$$

$$F_{x} = 2(x-1)-2x\lambda$$
; $F_{y} = 2(y-2)-2y\lambda$

$$2(x-1)-2x\lambda=0$$

$$2(y-2)-2y\lambda=0$$

$$\chi - 1 - \chi \lambda = 0$$

$$\frac{\chi_{-1}}{\chi} = \lambda$$

$$\frac{y-2}{y} = \lambda$$

$$\frac{z}{-z} = \lambda$$

$$1-\frac{1}{x}=\lambda$$

$$\frac{2}{1-\frac{2}{3}} = \lambda - 2$$

$$1-\frac{1}{x}=-1 \Rightarrow 1+1=\frac{1}{x} \Rightarrow 2=\frac{1}{x} \Rightarrow x=\frac{1}{2}$$

$$1-\frac{2}{7}=-1 \Rightarrow 1+1=\frac{2}{7} \Rightarrow 2=\frac{2}{7} \Rightarrow 7=\frac{2}{2} \Rightarrow 7=1$$

$$\therefore z^{2} = x^{2} + y^{2} \implies z^{2} = (\frac{1}{2})^{2} + 1^{2} = \frac{1}{4} + 1 = \frac{5}{4} \implies z = \pm \sqrt{\frac{5}{4}} = \pm \frac{\sqrt{5}}{2}$$

Hence the stationary points are
$$(\frac{1}{2}, 1, \frac{\sqrt{5}}{2}) \times (\frac{1}{2}, 1, -\frac{\sqrt{5}}{2})$$
.

$$d = \sqrt{(\frac{1}{2}-1)^2 + (1-2)^2 + (\frac{\sqrt{5}-2}{2})^2} = \sqrt{\frac{1}{4}+1 + \frac{5}{4}} = \sqrt{\frac{3}{2}+1} = \sqrt{\frac{7}{2}}$$

$$d = \int \left(\frac{1}{2} - 1 \right)^2 + \left(1 - 2 \right)^2 + \left(-\frac{\sqrt{57}}{2} \right)^2 = \int \frac{57}{2}$$

Hence the ninimum distance is $\sqrt{5/2}$.

(36) Find the maximum volume of the largest rectangular parallelopiped that can be inscribed in an ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Sol: Given
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Volume of parallelopiped = (2x)(2y)(2z) = 8xyz

$$F = 8xyz + \lambda \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 \right)$$

$$F = 8xyz + \lambda \frac{x^2}{a^2} + \lambda \frac{y^2}{b^2} + \lambda \frac{z^2}{c^2} - \lambda$$

$$F_x = 8yz + \frac{2x\lambda}{a^2}$$
; $F_y = 8xz + \frac{2\lambda y}{b^2}$

$$8yz + \frac{2x\lambda}{a^2} = 0$$

$$8yZ = -\frac{2x\lambda}{a^2}$$

$$4yz = \frac{-x\lambda}{a^2}$$

$$4xyz = -\frac{x^2\lambda}{2}$$

$$\frac{4xy^2}{-\lambda} = \frac{x^2}{a^2} - 2$$

$$8xz + \frac{2xy}{b^2} = 0$$

$$8xz = -\frac{2\lambda y}{b^2}$$

$$4xz = -\frac{\lambda y}{b^2}$$

$$4xyz = -\frac{\lambda y^2}{b^2}$$

$$\frac{4xy^2}{-x} = \frac{y^2}{b^2} - 3$$

$$; F_Z = 8xy + \frac{2\lambda Z}{c^2}$$

$$8xy + 2\frac{\lambda z}{c^2} = 0$$

$$8xy = -\frac{2\lambda z}{r^2}$$

$$4xy = -\frac{\lambda z}{c^2}$$

$$4xyz = -\lambda z^2$$

$$\frac{4x4^{2}}{-\lambda} = \frac{z^{2}}{c^{2}} - 4$$

From Q, 3 & 4,
$$\frac{x^2}{a^2} = \frac{y^2}{b^2} = \frac{z^2}{c^2}$$

$$\frac{\chi^2}{\alpha^2} + \frac{\chi^2}{\alpha^2} + \frac{\chi^2}{\alpha^2} = 1 \implies \frac{3\chi^2}{\alpha^2} = 1 \implies \chi^2 = \frac{\alpha^2}{3} \implies \chi = \frac{\alpha}{3}$$

Similarly,
$$y = \frac{b}{\sqrt{3}} + z = \frac{c}{\sqrt{3}}$$

Maximum volume =
$$8 \times y^{z} = 8 \left(\frac{a}{\sqrt{3}}\right) \left(\frac{b}{\sqrt{3}}\right) \left(\frac{c}{\sqrt{3}}\right) = \frac{8abc}{3\sqrt{3}}$$

F= x y z +
$$\lambda(x+y+z-a)$$
 = x y z + $\lambda x + \lambda y + \lambda z - \lambda a$
 $x = x + \lambda(x+y+z-a)$ = x y z + $\lambda x + \lambda y + \lambda z - \lambda a$

$$F_{x} = mx^{m-1}y^n z^p + \lambda$$
; $F_y = nx^m y^{n-1} z^p + \lambda$

$$F_{x}=0$$
 $mx^{m-1}y^{n}z^{p}+\lambda=0$

$$f_{x}=0$$
 $m_{x}^{m-1}y^{n}z^{+}\lambda=0$
 $n_{x}^{m}y^{n-1}z^{+}\lambda=0$

$$mx^{m-1}y^{n}z^{p}=-\lambda$$

$$mx^{m}y^{n-1}z^{p}=-\lambda$$

$$\frac{mxy^2z^p}{x} = -\lambda - 0$$

$$\frac{nx^my^2z^p}{y} = -\lambda - 0$$

$$F_{z} = 0$$

$$p_{x} y^{n} z^{p-1} + \lambda = 0$$

$$p_{x} y^{n} z^{p-1} = -\lambda$$

$$p_{x} y^{n} z^{p} = -\lambda$$

$$Z$$

From (1), (2) & (3),
$$m_{x}m_{y}n_{z}p = m_{x}m_{y}n_{z}p = p_{x}m_{y}n_{z}p$$

$$= p_{x}m_{y}n_{z}p$$

$$= p_{x}m_{y}n_{z}p$$

$$= p_{x}m_{y}n_{z}p$$

Dividing by xmynzp, we get

$$\frac{m}{x} = \frac{n}{y} = \frac{p}{z}$$

$$\frac{M}{X} = \frac{P}{Z}$$

$$\Rightarrow x = \frac{mz}{p} - \Phi$$

$$\frac{M}{X} = \frac{P}{Z}$$

$$\Rightarrow X = \frac{MZ}{P} - \Phi$$

$$\Rightarrow Y = \frac{NZ}{P} - \Phi$$

: Decomes,

$$\frac{mz}{p} + \frac{nz}{p} + z = a \Rightarrow z \left(\frac{m}{p} + \frac{n}{p} + 1\right) = a$$

$$\Rightarrow z\left(\frac{m+n+p}{p}\right) = \alpha \Rightarrow z = \frac{\alpha p}{m+n+p}$$

$$x = \frac{map}{p(m+n+p)} = \frac{ma}{m+n+p}$$

$$y = \frac{nap}{p(m+n+p)} = \frac{an}{m+n+p}$$

Maximum value of
$$x^{m}y^{n}z^{p} = \left(\frac{am}{m+n+p}\right)^{m} \left(\frac{an}{m+n+p}\right)^{n} \left(\frac{ap}{m+n+p}\right)^{p}$$

$$=\frac{a^{m}m}{(m+n+p)^{m}}\cdot\frac{a^{n}n^{n}}{(m+n+p)^{n}}\cdot\frac{a^{p}p^{p}}{(m+n+p)^{p}}$$

$$=\frac{a^{m+n+p}m^mn^np^p}{(m+n+p)^{m+n+p}}.$$

- Find the minimum values of x²yz³ subject to the condition 2x+y+3z=a.
 - (2) Find the maximum value of 400xy z² subject to the condition $x^2 + y^2 + z^2 = 1$.
 - 3 Find the dimensions of the rectangular box without top of maximum capacity with surface area 432 square metres.
 - A rectangular box open at the top, is to have a volume of 32cc.

 Find the dimensions of the box, that requires the least material for its construction.

(Fundamental theorem of calculus:

Suppose & is continuous on [a,b].

(i) If g(x) = If(t) dt, then g'(x) = f(x).

(ii) \$\int_{\frac{1}{2}}(x) dx = F(b) - F(a), where F is any anti-derivative of f, that is F'=f.

(A) Find the derivative of G(x) =] costEdt.

301: Given GI(x) = JOSSE dt = - JOSSE dt

Here f(t) = costt is continuous.

: 61(x)=-0sTx

(De Evaluate $\int (x^3-bx) dx$ by using Riemann sum with n sub intervals.

Sol: Take n sub intervals, we have $\Delta x = \frac{b-a}{n} = \frac{3-o}{n} = \frac{3}{n}$

 $x_0 = 0$, $x_1 = \frac{3}{n}$, $x_2 = \frac{b}{n}$, $x_3 = \frac{q}{n}$, ..., $x_i = \frac{3i}{n}$. Here $\frac{1}{4}(x) = x^3 - bx$

 $\int_{0}^{3} (x^{3} - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{1} (x_{i}) \Delta x = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{1} \left(\frac{3i}{n} \right) \left(\frac{3}{n} \right)$

 $= \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left(\left(\frac{3i}{n} \right)^3 - b \left(\frac{3i}{n} \right) \right)$

 $= \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left(\frac{27i^{3}}{n^{3}} - \frac{18i}{n} \right)$

= $\lim_{N\to\infty} \frac{81}{N^4} \frac{N}{1=1} \frac{1}{1} \frac{3}{1} - \lim_{N\to\infty} \frac{54}{N^2} \frac{1}{1=1} \frac{1}{1}$

 $= \lim_{n \to \infty} \frac{81}{n^4} \left[\frac{n(n+1)}{2} \right]^2 - \lim_{n \to \infty} \frac{54}{n^2} \left[\frac{n(n+1)}{2} \right]$

 $= \lim_{N \to \infty} \frac{81}{n^{4}} \left[\frac{n^{2}(1+1/n)}{2} \right]^{2} - \lim_{N \to \infty} \frac{54}{n^{2}} \left[\frac{n^{2}(1+1/n)}{2} \right]$

 $= \lim_{n\to\infty} \frac{81}{n^4} \times n^4 \frac{1+\frac{2}{n^2}}{4} - \lim_{n\to\infty} \frac{54}{n^2} \times n^2 \frac{1+\frac{2}{n^2}}{2}$

 $= \lim_{n \to \infty} \frac{81}{4} \left(1 + \frac{1}{n} \right)^2 - \lim_{n \to \infty} 27 \left(1 + \frac{1}{n} \right) = \frac{81}{4} - 27 = -\frac{27}{4}$

$$\frac{\text{Note:}}{n}$$

$$0 \leq 1 = \frac{n(n+1)}{2}$$

$$\frac{\text{Note:}}{0 \underbrace{\frac{1}{2}}_{i=1}^{n} i} = \frac{n(n+1)}{2} \underbrace{0 \underbrace{\frac{1}{2}}_{i=1}^{n} i^{2}}_{2} = \frac{n(n+1)(2n+1)}{b} \underbrace{3 \underbrace{\frac{1}{2}}_{i=1}^{n} i^{3}}_{2} = \underbrace{\left(\frac{n(n+1)}{2}\right)^{2}}_{2}$$

$$(3) \sum_{i=1}^{n} i^{3} = \left(\frac{n(n+i)^{2}}{2}\right)^{2}$$

(A.W) Evaluate J(x2-2x) dx by using Riemann sum with n sub intervals.

(A) What is wrong with the equation
$$\int_{-1}^{2} \frac{4}{x^3} dx = \left[\frac{-2}{x^2}\right]_{-1}^{2} = \frac{3}{2}$$
?

Sol: Here $f(x) = \frac{4}{x^3}$ is not continuous in the interval $[-1,2]$.

Since $f(x) = \frac{4}{x^3}$ is discontinuous at $x = 0$.

 $\frac{2}{x^3} \frac{4}{x^3} dx$ doesn't exist.

formulae:

$$0 \int_{x}^{n} dx = \frac{x^{n+1}}{n+1} + c, \quad 2 \int_{x}^{1} dx = \log x + c$$

$$n \neq -1$$

$$2\int \frac{1}{x} dx = \log x + c$$

$$(5) \int dx = x + c$$

$$(6) \int a dx = ax + c, \text{ where a is a constant.}$$

(4) Evaluate the following:

(i)
$$\int \left(\frac{b}{x^2} + \sqrt{x} + x^{3/2} + \frac{b}{x} + 1\right) dx$$

$$\frac{50!}{50!} \int \left(\frac{b}{x^2} + \sqrt{x} + x^{3/2} + \frac{5}{x} + 1\right) dx = \int \left(6x^{-2} + x^{3/2} + \frac{5}{x} + 1\right) dx$$

$$= 6x^{-2+1} + \frac{x^{3/2} + 1}{\sqrt{2} + 1} + \frac{x^{3/2+1}}{\sqrt{2} + 1} + 5\log x + x + C$$

$$= \frac{bx^{-1}}{-1} + \frac{x^{3/2}}{\sqrt{2}} + \frac{x^{5/2}}{\sqrt{2}} + 5\log x + x + C$$

$$= -\frac{b}{x} + \frac{2}{3}x^{3/2} + \frac{2}{5}x^{5/2} + 5\log x + x + C$$

(ii)
$$\int \frac{x^2 + 3x - 5}{\sqrt{x}} dx$$

$$\frac{50!}{\sqrt{x}} \int \frac{x^2 + 3x - 5}{\sqrt{x}} dx = \int x^{-\frac{1}{2}} (x^2 + 3x - 5) dx$$

$$= \int \left(x^{-\frac{1}{2}}x^{2} + 3x^{-\frac{1}{2}}x - 5x^{-\frac{1}{2}}\right) dx$$

$$= \int \left(x^{-\frac{1}{2}}x^{2} + 3x^{-\frac{1}{2}}x - 5x^{-\frac{1}{2}}\right) dx = \int \left(x^{\frac{3}{2}} + 3x^{\frac{1}{2}} - 5x^{-\frac{1}{2}}\right) dx$$

$$= \frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1} + 3\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} - 5\frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + C$$

$$= \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + 3\frac{x^{\frac{3}{2}}}{\frac{3}{2}} - 5\frac{x^{\frac{1}{2}}}{\frac{1}{2}} + C = \frac{2}{5}x^{\frac{5}{2}} + 2x^{\frac{3}{2}} - 10\sqrt{x} + C$$

(iii)
$$\int (e^{2x} + 3x - 7) dx$$

$$\frac{501:}{\int (e^{2x} + 3x - 7) dx} = \frac{e^{2x}}{2} + 3\frac{x^2}{2} - 7x + C$$

$$\frac{50!}{}$$
 $\int (e^{\log x} + 2) dx = \int (x+2) dx = \frac{x^2}{2} + 2x + C$

$$(v)$$
 $\int x^2 (1-x)^2 dx$

$$\frac{50!}{50!} \int x^{2} (1-x)^{2} dx = \int x^{2} (1+x^{2}-2x) dx$$

$$= \int (x^{2}+x^{4}-2x^{3}) dx$$

$$= \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{2x^{4}}{4} + c$$

$$= \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{4}}{2} + c$$

(Ho) Evaluate the following:

(i)
$$\int (x^{4} - \frac{1}{2}x^{3} + \frac{1}{4}x - 2) dx$$
 (ii) $\int \frac{x^{3} - 2\sqrt{x}}{x} dx$

(ii)
$$\int \frac{x^3 - 2\sqrt{x}}{x} dx$$

(iii)
$$\int \left(\chi^2/\bar{\sigma} - \chi^{-3}/\bar{\sigma}\right)^2 d\chi$$

$$(ii) \int (e^{x} + x^{2} + 8) dx$$

(N) E) If is continuous &
$$\int_{0}^{4} \frac{1}{4(x)dx} = 10$$
, find $\int_{0}^{2} \frac{1}{4(2x)dx}$.

Take
$$2x=t$$

$$2dx=dt \Rightarrow dx = \frac{dt}{2}$$
When $x=0 \Rightarrow t=0$

$$x=2 \Rightarrow t=2(2)=4$$

$$\chi = 0 \Rightarrow \xi = 0$$

$$\chi = 2 \Rightarrow \xi = 2(2) = 4$$

$$\int_{0}^{2} \frac{1}{4(2x)} dx = \int_{0}^{4} \frac{1}{4(t)} \frac{dt}{2} = \frac{1}{2} \int_{0}^{4} \frac{1}{4(t)} dt = \frac{1}{2} (10) = 5$$

$$\left(\cdot \cdot \int_{0}^{\infty} f(x) dx = \int_{0}^{\infty} f(t) dt = 10 \right)$$

Formulae:

O Sinx dx = - coax+c

3 | sec ndn = tanx+c

5 | secxtanxdx = secx+c

O [coshxdx = sinhx+c

9 [1 dx = tan-1x+c

(1) $\int \frac{1}{\sqrt{x^2}} dx = \log(x + \sqrt{x^2 - 1}) + c$

(3) [1 dx = sec x+c

@ Josxdx = sinx+c

(4)] cosec 2x dx = - cotx+c

6 Juseux cotrdx = - cosecx + c

@ Jsinhxdx = wshx+c

 $\int \frac{1}{\sqrt{1-x^2}} dx = sin^{-1}x + c$

 $\sqrt{4} \int \sin 2x dx = -\frac{\cos 2x}{2} + c$

(A) Evaluate J lanx dx.

 $\frac{50!}{50!} \int \frac{\text{danx}}{\text{danx}} dx = \int \frac{\sin x}{\cos x} dx$

 $= \int \frac{\sin x}{\cos x} dx = \int \frac{\sin x}{\cos x} \times \frac{\cos x}{1 + \cos^2 x} dx$ Put coax = t -sinxdx = dt sinxdx = -dt

 $= \int \frac{\sin x}{1 + \cos^2 x} dx$

 $= \int \frac{-dt}{1+t^2} = -\int \frac{dt}{1+t^2}$

=- tan-1+ + c = -tan-1 (cosx)+C

TEvaluate the following:

(i) [1 dx

Sol: $\int \frac{1}{1+\sin x} dx = \int \frac{1}{1+\sin x} \times \frac{1-\sin x}{1-\sin x} dx$ $= \int \frac{1 - \sin x}{1 - \sin x} dx = \int \frac{1 - \sin x}{\cos^2 x} dx$ $= \int \left(\frac{1}{\cos^2 x} - \frac{\sin x}{\cos^2 x} \right) dx = \int \left(\sec^2 x - \tan x \sec x \right) dx$ = tanx - secx+C

$$\frac{Sol:}{\int \frac{\cos^2 x}{1-\sin x} dx} = \int \frac{1-\sin^2 x}{1-\sin x} dx$$

$$= \int \frac{(1+\sin x)(1-\sin x)}{1-\sin x} dx = \int (1+\sin x) dx$$

X-WBX+C

$$\frac{50!}{50!} \int (\tan x - 2\cos x)^2 dx = \int (\tan^2 x + 4\cos^2 x - 4\tan x \cos x) dx$$

$$= \int (\sec^2 x - 1 + 4(\cos^2 x - 1) - 4\tan x \frac{1}{\tan x}) dx$$

$$= \int (\sec^2 x - 1 + 4\cos^2 x - 4 - 4) dx$$

$$= \int (\sec^2 x + 4\cos^2 x - 9) dx$$

$$= \tan x + 4(-\cot x) - 9x + C$$

$$= \tan x - 4\cot x - 9x + C$$

Evaluate the following:
(i)
$$\int \frac{\sin^2 x}{1+\cos x} dx$$
 (ii) $\int \frac{1}{1-\cos x} dx$ (iii) $\int \left(\frac{3}{1-x^2} + e^x + e^x\right) dx$

(iii)
$$\left(\frac{3}{\sqrt{1-x^2}} + e^{x} + e^{x} \right) dx$$

@ Evaluate the following:

(i)
$$\int (x^2 + 2x - 5) dx$$

$$= \left[\frac{x^3}{3} + \frac{2x^2}{2} - 5x \right]_{1}^{4} = \left[\frac{x^3}{3} + x^2 - 5x \right]_{1}^{4}$$

$$= \left[\frac{64}{3} + 16 - 20 - \left(\frac{1}{3} + 1 - 5 \right) \right]$$

 $= \frac{64}{3} + 16 - 20 - \frac{1}{3} - 1 + 5 = 21$

(ii)
$$\int_{0}^{1} (2-|x|) dx$$

 $\frac{30!}{1!} \int_{0}^{1} (2-|x|) dx$

Here
$$f(x)=2-|x|$$
 is an even function

$$\int_{-a}^{a} \frac{1}{12} \frac{1}{12}$$

$$\frac{1}{4}(x) = 2 - |x|$$

$$\frac{1}{4}(-x) = 2 - |x| = \frac{1}{4}(x)$$

$$\int_{-1}^{1} (2-|x|) dx = 2 \int_{0}^{1} (2-x) dx = 2 \left[2x - \frac{x^{2}}{2}\right]_{0}^{1}$$

$$= 2 \left[2 - \frac{1}{2}\right] = 2 \times \frac{3}{2} = 3$$

$$\left(00\right)^{\frac{1}{2}} \frac{1}{1+\tan x} dx \cdot \left(00\right)^{\frac{1}{2}} \frac{\cos x}{\sin x + \cos x} dx\right)$$

$$\frac{50!}{1+1} \int_{0}^{1} \frac{1}{1+\tan x} dx \cdot \left(00\right)^{\frac{1}{2}} \frac{\cos x}{\sin x + \cos x} dx = \int_{0}^{1} \frac{\cos \left(\frac{\pi}{2} - x\right)}{\sin x + \cos x} dx$$

$$\left(1 + \frac{1}{2}\right)^{\frac{1}{2}} \frac{\cos x}{\cos x + \sin x} dx - \frac{1}{2} \frac{\sin x}{\cos x + \sin x} dx$$

$$= \int_{0}^{1/2} \frac{\sin x + \cos x}{\sin x + \cos x} dx + \int_{0}^{1/2} \frac{\sin x}{\cos x + \sin x} dx$$

$$= \int_{0}^{1/2} \frac{\sin x + \cos x}{\sin x + \cos x} dx = \int_{0}^{1/2} \frac{1}{2} dx = \left(x\right)^{\frac{1}{2}} \frac{\pi}{2} - 0 = \frac{\pi}{2}$$

$$\therefore \frac{1}{1+\tan x} dx = \frac{\pi}{4}$$

$$\therefore \frac{1}{1+\tan x} dx = \frac{\pi}{4}$$

$$\therefore \int_{0}^{1} \frac{1}{1+\tan x} dx = \frac{\pi}{4}$$

$$(10) \int_{0}^{1} \frac{1}{\cos x} dx = (10)^{\frac{1}{2}} \frac{1}{2} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x + \cos x} dx = (10)^{\frac{1}{2}} \frac{1}{2} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x + \cos x} dx = (10)^{\frac{1}{2}} \frac{1}{2} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x + \cos x} dx = (10)^{\frac{1}{2}} \frac{1}{2} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x + \cos x} dx = (10)^{\frac{1}{2}} \frac{1}{2} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x + \cos x} dx = (10)^{\frac{1}{2}} \frac{1}{2} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\sin x}{\sin x} dx = (10)^{\frac{1}{2}} \frac{1}{2} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x} dx = (10)^{\frac{1}{2}} \frac{1}{2} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x} dx = (10)^{\frac{1}{2}} \frac{1}{2} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x} dx = (10)^{\frac{1}{2}} \frac{1}{2} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x} dx = (10)^{\frac{1}{2}} \frac{1}{2} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x} dx = (10)^{\frac{1}{2}} \frac{1}{2} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x} dx = (10)^{\frac{1}{2}} \frac{1}{2} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x} dx = (10)^{\frac{1}{2}} \frac{1}{2} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x} dx = (10)^{\frac{1}{2}} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x} dx = (10)^{\frac{1}{2}} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x} dx = (10)^{\frac{1}{2}} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x} dx = (10)^{\frac{1}{2}} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x} dx = (10)^{\frac{1}{2}} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x} dx = (10)^{\frac{1}{2}} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x} dx = (10)^{\frac{1}{2}} \cos x$$

$$(11) \int_{0}^{1/2} \frac{\cos x}{\sin x} dx = (10)^{\frac{1}{2}} \cos x$$

$$(11) \int_{0}^$$

Scanned with CamScanner

= $\int (\log(\tan x) + \log(\cot x)) dx = \int \log(\tan x \cdot \cot x) dx$

$$= \int_{0}^{\pi/2} \log 1 \, dx = \int_{0}^{\pi/2} 0 \, dx = 0$$

$$\therefore \hat{l} = 0 \Rightarrow \int_{0}^{\pi/2} \log (\tan x) \, dx = 0$$

Substitution rule:

$$du = (2+2x)dx = 2(1+x)dx \Rightarrow (x+1)dx = \frac{du}{2}$$

$$\int (x+1) \sqrt{2x+x^2} \, dx = \int \sqrt{u} \, \frac{du}{2} = \frac{1}{2} \int \sqrt{u} \, du = \frac{1}{2} \int u^{1/2} \, du$$

$$= \frac{1}{2} \left[\frac{u^{1/2+1}}{1/2+1} \right] + c = \frac{1}{2} \left[\frac{u^{3/2}}{3/2} \right] + c$$

$$= \frac{1}{2} \times \frac{2}{3} u^{3/2} + c = \frac{1}{3} \left(2x + x^2 \right)^{3/2} + c$$

$$2udu = dx$$

$$\therefore \int \frac{x^2}{\sqrt{x+5}} dx = \int \frac{(u^2-5)^2}{\sqrt{u^2}} 2udu = \int \frac{(u^2-5)^2}{u} 2udu = 2 \int (u^2-5)^2 du$$

$$= 2 \int (u^4 + 25 - 10u^2) du = 2 \left(\frac{u^5}{5} + 25 - u - 10 \frac{u^3}{3}\right) + c$$

$$= 2 \left(\frac{(x+5)^{5/2}}{5} + 25 - \sqrt{x+5} - \frac{10(x+5)^{3/2}}{3}\right) + c$$

Sol: Put
$$u = \log x$$

 $du = \frac{1}{x} dx$

when
$$x=1 \Rightarrow u = \log 1 = 0$$

 $x=e \Rightarrow u = \log e = 1$

$$\int_{1}^{2} \frac{\log x}{x} dx = \int_{0}^{2} u du = \left(\frac{u^{2}}{2}\right)_{0}^{1} = \frac{1}{2}$$

(15) Evaluate:
$$\int \frac{e^{1/x}}{x^2} dx$$

$$du = e^{1/x}$$
. $\left(\frac{-1}{x^2}\right) dx \Rightarrow \frac{dx}{x^2} = \frac{-du}{e^{1/x}} = -\frac{du}{u}$

When x=1 => u=e

$$x = 2 \Rightarrow u = e^{\frac{1}{2}} = \sqrt{e}$$

$$\therefore \int \frac{e^{\frac{1}{2}x}}{x^2} dx = \int u \left(-\frac{du}{u}\right) = -\int e^{\frac{1}{2}u} du = -(u) = e^{-\sqrt{e}}$$

$$= -(\sqrt{e} - e) = e^{-\sqrt{e}}$$

$$du = \frac{1}{1+x^2} dx$$

1+x+x = 1+tanu+tanu = tanu+secu

$$-\int_{e}^{1} \int_{e}^{1} \int_{e}^{1} \frac{1+x+x^{2}}{1+x^{2}} dx = \int_{e}^{1} \int_{e}^{1} \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx$$

$$\int_{c}^{c} \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{c} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{c} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{c} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{c} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{c} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{c} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{c} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{c} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{c} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{a} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{a} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{a} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{a} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{a} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{a} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{a} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{a} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{a} dt = E + C$$

$$= c \int_{c}^{a} \int_{c}^{a} x \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{c}^{a} dt = E + C$$

(H.W) Evaluate the following:

(iii)
$$\int \frac{e^{x}}{e^{x+1}} dx$$

(v)
$$\int \frac{(\log x)^2}{x} dx$$

(iv)
$$\int_{0}^{1} \frac{e^{x}+1}{e^{x}+x} dx$$

Integration by parts:

$$\frac{50!}{50!} \text{ Let } u = x , dv = 6005 \times dx$$

$$du = dx , \int dv = \int 6005 \times dx$$

$$v = \frac{5005 \times dx}{5005 \times dx}$$

$$\therefore \int x \cos 5 x dx = x \frac{\sin 5 x}{5} - \int \frac{\sin 5 x}{5} dx$$

$$= \frac{x}{5} \sin 5 x - \frac{1}{5} \left(-\frac{\cos 5 x}{5} \right) + C$$

$$= \frac{x}{5} \sin 5 x + \frac{1}{25} \cos 5 x + C$$

Evaluate:
$$\int x^2 e^{x} dx$$

Sol: $u = x^5$
 $u' = 5x^4$
 $v' = e^{x}$
 $u'' = 20x^3$
 $v'_1 = e^{x}$
 $v'_1 = e^{x}$
 $v'_2 = e^{x}$
 $v''_3 = e^{x}$
 $v''_4 = e^{x}$
 $v''_4 = e^{x}$
 $v''_4 = e^{x}$

Judy=ut-Jodu

 $-..\int_{x}x^{5}e^{x}dx = x^{5}e^{x} - 5x^{4}e^{x} + 20x^{3}e^{x} - 60x^{2}e^{x} + 120xe^{x} - 120e^{x} + C$

(AU) Using integration by parts, evaluate \(\left(\ln x \right)^2 dx.

Using integralion by parts?

Sol:
$$u = (\log x)^2$$

$$dv = \frac{dx}{x^2} = x^{-2}dx$$

$$du = 2\log x \cdot \frac{1}{x}dx$$

$$v = \frac{x^{-2+1}}{-2+1} = \frac{x^{-1}}{-1} = \frac{1}{x}$$

$$\int u dv = uv - \int v du$$

$$\therefore \int \frac{(\ln x)^2}{x^2} dx = \int \frac{(\log x)^2}{x^2} dx$$

$$= (\log x)^2 \cdot \frac{1}{x} - \int \frac{1}{x} \cdot 2 \log x \cdot \frac{1}{x} dx$$

$$= -\frac{1}{x} (\log x)^2 + 2 \int \frac{\log x}{x^2} dx$$

$$u = \log x$$

$$dv = \frac{dx}{x^2} = x^{-2} dx$$

$$u = \log x$$

$$dv = \frac{dx}{x^2} = x^{-2} dx$$

$$du = \frac{1}{x} dx$$

$$v = -\frac{1}{x}$$

$$\int \frac{(\ln x)^{2}}{x^{2}} dx = -\frac{1}{x} (\log x)^{2} + 2 \left[\log x \cdot -\frac{1}{x} - \int -\frac{1}{x} \cdot \frac{1}{x} dx \right]$$

$$= -\frac{1}{x} (\log x)^{2} - \frac{2}{x} \log x + 2 \int \frac{dx}{x^{2}}$$

$$= -\frac{1}{x} (\log x)^{2} - \frac{2}{x} \log x + 2 \int x^{-2} dx$$

$$= -\frac{1}{x} (\log x)^{2} - \frac{2}{x} \log x + 2 \left(\frac{x^{-2+1}}{-2+1} \right) + c$$

$$= -\frac{1}{x} (\log x)^{2} - \frac{2}{x} \log x + 2 \left(\frac{x^{-1}}{-1} \right) + c$$

$$= -\frac{1}{x} (\log x)^{2} - \frac{2}{x} \log x + 2 \left(\frac{x^{-1}}{-1} \right) + c$$

$$= -\frac{1}{x} (\log x)^{2} - \frac{2}{x} \log x - \frac{2}{x} + c$$

(NO Evaluate Jeax cosbxdx using integration by parts.

$$\frac{30!}{du = e^{ax}} \qquad \frac{dv = cosb \times dx}{dv = usb \times dx}$$

$$\frac{du = e^{ax} \cdot a dx}{du} \qquad \frac{dv = sinb \times dx}{du}$$

Let
$$\hat{I} = \int e^{ax} \cos bx \, dx = e^{ax} \frac{\sin bx}{b} - \int \frac{\sin bx}{b} e^{ax} a \, dx$$

$$= \frac{1}{b} e^{ax} \sin bx - \frac{a}{b} \int e^{ax} \sin bx \, dx$$

$$u = e^{ax} \qquad dv = \sin bx \, dx$$

$$du = e^{ax} a \, dx \qquad v = -\frac{\cos bx}{b}$$

$$\therefore 2 = \frac{1}{b} e^{ax} \sinh x - \frac{a}{b} \left[-e^{ax} \frac{\cosh x}{b} - \int -\frac{\cosh x}{b} e^{ax} a dx \right]$$

$$\tilde{I} = \frac{1}{b} e^{ax} \sinh x + \frac{a}{b^2} e^{ax} \cosh x - \frac{a^2}{b^2} \int e^{ax} \cosh x \, dx$$

$$\tilde{I} = \frac{1}{b} e^{ax} \sinh x + \frac{a}{b^2} e^{ax} \cosh x - \frac{a^2}{b^2} \tilde{I}$$

$$\hat{1} + \frac{a^2}{b^2} \hat{1} = \frac{1}{b} e^{ax} \sinh x + \frac{a}{b^2} e^{ax} \cosh x$$

$$\widehat{I}\left(1+\frac{a^2}{b^2}\right) = \frac{1}{b}e^{ax}\sinh x + \frac{a}{b^2}e^{ax}\cosh x$$

$$\hat{I} = \frac{b^2}{a^2 + b^2} \left(\frac{1}{b} e^{ax} \sinh x + \frac{a}{b^2} e^{ax} \cosh x \right)$$

$$\therefore \hat{I} = \frac{1}{a+b^2} \left(b e^{ax} \sinh x + a e^{ax} \cosh x \right) + c$$

(A) Evaluate Jexsinxdx by using integration by parts.

$$u=e^{x} \qquad dv = \sin x dx$$

$$du=e^{x} dx \qquad V=-\cos x$$

Sudv=uv-Jodu

Let] = Jexsinxdx = ex(-coxx) - J-coxx exdx

$$= -e^{x} \cos x + \int e^{x} \cos x \, dx$$

$$u=e^{x}$$
 $dv=cosxdx$
 $du=e^{x}dx$ $v=sinx$

$$\therefore \hat{l} = -e^{x} \cos x + \left[e^{x} \sin x - \int \sin x e^{x} dx \right]$$

$$= -e^{x} \cos x + e^{x} \sin x - \int e^{x} \sin x dx$$

$$\therefore \int_{0}^{\infty} = -e^{x} \cos x + e^{x} \sin x - \int_{0}^{\infty} e^{x} \sin x - \int_{$$

$$2\hat{I} = -e^{\chi}\cos x + e^{\chi}\sin x - I$$

$$2\hat{I} = -e^{\chi}\cos x + e^{\chi}\sin x \implies \hat{I} = \frac{1}{2}e^{\chi}\left(\sin x - \cos x\right) + C$$

(H.W) Evaluate Jeax sinbxdx using integration by parts.

2 Evaluate Jexcosxdx using integration by parts.

(22) Establish a reduction formula for In=Jsin"xdx. Hence find Jsin"xdx.

$$= \int \sin^{n-1} x \sin x \, dx$$

Judv=uv-Jvdu $du = (n-1) \sin^{N-2} x \cos x dx \qquad \forall = -\cos x$

 $\therefore 2n = \sin^{n-1}x(-\cos x) - \int (-\cos x)(n-1)\sin^{n-2}x\cos x \, dx$ $=-\beta i n^{n-1} \times \cos x + (n-1) \int \beta i n^{n-2} \times \cos^2 x \, dx$

= $-\sin^{n-1}x\cos x + (n-1)\int \sin^{n-2}x (1-\sin^2x) dx$ (: $\sin^2x + \cos^2x = 1$)

 $=-\beta i n^{N-1} \pi \cos x + (n-i) \int (\sin^{N-2} x - \sin^{N} x) dx$

 $=-\sin^{n-1}x\cos x+(n-1)\int \sin^{n-2}xdx-(n-1)\int \sin^{n}xdx$

$$\frac{1}{1} \int_{N} = -\sin^{N-1} x \cos x + (n-1) \frac{1}{2} \int_{N-2} - (n-1) \frac{1}{2} x \qquad (\because by 0)$$

$$\frac{1}{1} \int_{N} + (n-1) \frac{1}{2} \int_{N} = -\sin^{N-1} x \cos x + (n-1) \frac{1}{2} \int_{N-2}$$

$$\frac{1}{1} \int_{N} = -\sin^{N-1} x \cos x + (n-1) \frac{1}{2} \int_{N-2}$$

$$\frac{1}{1} \int_{N} = -\frac{1}{1} \int_{N} \sin^{N-1} x \cos x + \frac{N-1}{1} \int_{N-2}$$

$$\frac{1}{1} \int_{N} \sin^{N} x dx = -\frac{1}{1} \int_{N} \sin^{N-1} x \cos x + \frac{N-1}{1} \int_{N-2}$$

$$\frac{1}{1} \int_{N} \int_{N} \sin^{N} x dx = \int_{N} \int_{N} \sin^{N-1} x \cos x + \frac{N-1}{1} \int_{N} \sin^{N-2} x dx$$

$$\frac{1}{1} \int_{N} \int_{N} \sin^{N} x dx = \int_{N} \int_{N} \sin^{N-1} x \cos x + \frac{N-1}{1} \int_{N} \sin^{N-2} x dx$$

$$\frac{1}{1} \int_{N} \int_{N} \int_{N} \sin^{N-1} x \cos x + \frac{N-1}{1} \int_{N} \int_{N} \sin^{N-2} x dx$$

$$\frac{1}{1} \int_{N} \int_{N} \int_{N} \sin^{N-1} x \cos x + \frac{N-1}{1} \int_{N} \int_{N} \sin^{N-2} x dx$$

$$\frac{1}{1} \int_{N} \int_{N}$$

 $\left[\frac{n-1}{n}, \frac{n-3}{n-2}, \frac{n-5}{n-4}, \dots, \frac{2}{3}, 1\right] + n$ is odd

$$2 \Rightarrow 2 = \frac{2-1}{2}$$

$$2_{2} = \frac{2-1}{2}$$

$$2_{3} = \frac{3-1}{3}$$

$$2_{3} = \frac{2}{3}$$

(23) Establish a reduction formula for In= Just ndn. Hence find Just ndn. Sol: Griven In= Jessmanda - 1 = [cox n-1x coxxdx dr=conxox ひこしか か $du = (n-1)\cos^{(n-2)}x(\sin x)dx \qquad \forall = \sin x$ $\frac{1}{n} = \cos^{n-1} x \sin x - \int \sin x (n-1) \cos^{n-2} x (-\sin x) dx$ = $\cos^{N-1} x \sin x + (n-1) \int \cos^{N-2} x \sin^2 x dx$ $= \cos^{n-1} x \sin x + (n-1) \int \cos^{n-2} x (1-\cos^2 x) dx$ $= \cos^{n-1} x \sin x + (n-1) \int \cos^{n-2} x dx = (n-1) \int \cos^{n} x dx$ $2n = \cos^{n-1} x \sin x + (n-1) \sum_{n-2} - (n-1) \sum_{n} n$ $2n + (n-1)2n = cos^{n-1}x sinx + (n-1)2n-2$ În (1+n-1)=ros n-1 x sinx + (n-1) În-2 :. $n \ln = \cos^{n-1} x \sin x + (n-1) \ln -2$ $2n = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} 2n-2$ $-i\int \cos^n x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx$ $\tilde{J}_0 = \int \cos^0 x \, dx = \int dx = x + c$ $2_1 = \int \cos x \, dx = \sin x + C$ Now consider, $2n = \int_{0}^{\pi/2} \cos^{n} x \, dx$ $2n = \left(\frac{1}{n} \cos^{n-1} x \sin x\right)^{\pi/2} + \frac{n-1}{n} \int_{0}^{\pi/2} \cos^{n-2} x \, dx$ $=0+\frac{N-1}{n}\sum_{n-2}$ $\hat{I}_{n-2} = \frac{n-2-1}{n-2} \hat{I}_{n-2-2} = \frac{n-3}{n-2} \hat{I}_{n-4} - \hat{I}_{n} = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdots \frac{1}{2} \cdot \hat{I}_{n}$ $\frac{1}{2} = \frac{1}{2} = \frac{1}$ if n is even $\sum_{n-4} = \frac{n-4-1}{n-4} \sum_{n-4-2} = \frac{n-5}{n-4} \sum_{n-4} n-6$ $\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdots \frac{2}{3} \sum_{n-2} \frac{2}{n-4} \cdots \frac{2}{3} \cdots \frac{2}$

$$\frac{1}{10} = \int_{0}^{\pi/2} \cos^{3}x \, dx = \int_{0}^{\pi/2} dx = \left(x\right)_{0}^{\pi/2} = \frac{\pi}{2}$$

$$\frac{1}{1} = \int_{0}^{\pi/2} \cos x \, dx = \left(\frac{x}{n}\right)_{0}^{\pi/2} = \sin^{\pi/2} - \sin^$$

(24) Find the value of (i) Isin3xdx (ii) Isin4xdx (iii) Isin7xdx
(iv) [. 8] (iv) Jain8xdx (v) Jain24xdx.

Sol: We know that Join xdx = - 1 sin n-1 x cosx + n-1 Join n-2 x dx

(i) $\int \sin^3 x \, dx = -\frac{1}{3} \sin^2 x \cos x + \frac{3-1}{3} \int \sin x \, dx$ $= \frac{-1}{3} \sin^2 x \cos x + \frac{2}{3} \left(-\cos x\right) + C$

 $-i \int \sin^3 x \, dx = -\frac{1}{3} \sin^2 x \cos x - \frac{2}{3} \cos x + c$

(ii) $\int \sin^4 x dx = \frac{-1}{4} \sin^3 x \cos x + \frac{3}{4} \int \sin^2 x dx$ (Here n=4) $= -\frac{1}{4} \sin^3 x \cos x + \frac{3}{4} \left[-\frac{1}{2} \sin x \cos x + \frac{1}{2} \int \sin x \, dx \right]$ (Here n = 2) $= -\frac{1}{4} \sin^3 x \cos 5x - \frac{3}{8} \sin x \cos 5x + \frac{3}{8} x + C$ $= -\frac{1}{4} \sin^3 x \cos \beta x - \frac{3}{8} \frac{\sin 2x}{2} + \frac{3}{8} x + c \quad \left(-: 2 \sin x \cos x = \sin 2x \right)$

 $= -\frac{1}{4} \sin^3 x \cos x - \frac{3}{16} \sin 2x + \frac{3}{8} x + C$

(Here n=7 => odd) (iii) Jainzada

We know that $\sqrt[T]{2} \sin^{n} x \, dx = \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdots \frac{1}{2} \frac{\pi}{2} & \text{if } n \text{ is even} \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdots \frac{2}{3} \cdot 1 & \text{if } n \text{ is odd} \end{cases}$

 $\therefore \int \sin^7 x \, dx = \frac{7-1}{7} \cdot \frac{7-3}{7-2} \cdot \frac{7-5}{7-4} \cdot 1 = \frac{6}{7} \times \frac{4}{5} \times \frac{2}{3} \times 1 = \frac{16}{35}$

(iv) $\int_{0}^{2} \sin^{8}x \, dx = \frac{7}{8} \times \frac{5}{6} \times \frac{3}{4} \times \frac{1}{2} \times \frac{\pi}{2} = \frac{35}{256} \pi$ (Here n=8 > even)

Sol: We know that
$$\int_{0}^{\pi/2} \cos^{n} x \, dx = \int_{0}^{\pi-1} \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2} \cdot \frac{1}{4} \cdot n \text{ is even}$$

$$\left(\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdot \dots \cdot \frac{2}{3} \cdot 1 \cdot \frac{1}{4} \cdot n \text{ is odd}\right)$$

(v) $\int_{-\infty}^{1/2} \sin^{2n} x dx = \frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2} \cdot \frac{2n-5}{2n-4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$ (Here 2n is even)

Here n=5. .. n is odd.

$$-1. \int \omega_{x} dx = \frac{4}{5} \times \frac{2}{3} \times 1 = \frac{8}{15}$$

(26) Find the reduction formula for Jsec Nxdx, n ≥ 2 is an integer.

$$dv = \sec^{n-2}x$$

$$du = (n-2) \sec^{n-3}x \left(\sec x \tan x \right) dx$$

$$dx = \tan x$$

: In = sec 2 x lanx - Stanx (n-2) sec 2x secx tanx dx

=
$$\sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} x \tan^2 x dx$$

= $\sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} x \tan^2 x dx$

=
$$\sec \left(\frac{x \cdot \tan x - (n-2)}{x \cdot \tan x - (n-2)} \right) \sec \left(\frac{x \cdot \cot^2 x}{x \cdot \cot^2 x - 1} \right) dx$$

=
$$\sec x \tan x - (n-2) \int (\sec^n x - \sec^{n-2} x) dx$$

= $\sec^n x \tan x - (n-2) \int (\sec^n x - \sec^n x) dx$

=
$$\sec^{n-2}x \tan x - (n-2) \left(\sec x - \sec x - \sec x\right)$$

= $\sec^{n-2}x \tan x - (n-2) \int \sec^{n}x dx + (n-2) \int \sec^{n-2}x dx$

$$I_n = Sec^{n-2} \times tanx - (n-2)I_n + (n-2)I_{n-2}$$

$$\frac{2n + (n-2) \cdot 2n - 300}{2n (1+n-2)} = 300 \times \frac{n-2}{2n (n-2)} = 300$$

$$2n = \frac{1}{n-1} \sec^{n-2} x \tan x + \frac{n-2}{n-1} 2n-2$$

27) Find the reduction formula for Josephada, n ≥ 2 is an integer. Sol: Let In=Josephada = Josephada = Josephada

 $u = \cos x e^{n-2}x$ $du = (n-2)\cos x e^{n-3}x \left(-\cos x \cos x \cos x\right) dx \qquad \forall = -\cot x$

 $\frac{1}{2} = \cos \beta e e^{N-2} \times (-\cot x) - \int (-\cot x) (n-2) \cos \beta e e^{N-3} \times (-\cos \beta e e x) dx$ $= -\cos \beta e e^{N-2} \times \cot x + (n-2) \int \cos \beta e e^{N-2} \times \cot x dx$ $= -\cos \beta e e^{N-2} \times \cot x + (n-2) \int \cos \beta e e^{N-2} \times (\cos \beta e e^{N-2} \times -1) dx$ $= -\cos \beta e e^{N-2} \times \cot x + (n-2) \int \cos \beta e e^{N-2} \times (\cos \beta e e^{N-2} \times -1) dx$

 $=-\cos e c^{N-2} \times \cot x - (n-2) \int \csc^{N} x \, dx + (n-2) \int \cos e c^{N-2} x \, dx$

 $2n = -\cos 2 x \cos x - (n-2) \ln + (n-2) \ln 2$

 $-1. \int_{N} + (n-2) \int_{N} = -\cos x e^{N-2} \times \cot x + (n-2) \int_{N-2}^{\infty} dx = -\cos x e^{N-2} \times \cot x + (n-2) \int_{N-2}^{\infty} dx = -\cos x e^{N-2} + (n-2) \int_{N-2}^{$

 $l_n(1+n-2) = -\cos x e^{n-2} x \cot x + (n-2) l_{n-2}$

 $2n = \frac{-1}{N-1} \cos^{2} x \cos^{2} x + \frac{N-2}{N-1} 2n-2$

Lo= Scoper xdx = Sdx = x+c

2, = J cosecxdx = log(cosecx-cotx)+c

(28) Find the reduction formula for Itan's xdx.

Sol: Let $2n = \int \tan^n x \, dx = \int \tan^{n-2} x \int an^2 x \, dx$

 $= \int \tan^{n-2} x \left(\sec^2 x - 1 \right) dx$ $= \int \tan^{n-2} x \sec^2 x dx - \int \tan^{n-2} x dx$

 $= \int u^{n-2} du - \int \tan^{n-2} x dx$

 $= \frac{u^{n-2+1}}{n-2+1} - \frac{1}{2}n-2 = \frac{u^{n-1}}{n-1} - \frac{1}{2}n-2$

 $2n = \frac{\tan^{n-1}x}{n-1} - 2n-2$

To= Stanoxdx= Sdx=x+c

I, = Stanxdx = log(secx)+C

Put u=lanx du=sec2xdx

Put u= cotx

du=-cosec2xdx

-du = conect x dx

=
$$\int \cot^{n-2} x \cot^2 x \, dx = \int \cot^{n-2} x \left(\cos x - 1 \right) dx$$

= $\int \cot^{n-2} x \cos x \, dx - \int \cot^{n-2} x \, dx$

$$=\int u^{n-2}(-du)-\int_{n-2}$$

$$= - \left[\frac{u^{n-2+1}}{n-2+1} \right] - \frac{1}{2}n-2$$

$$= -\frac{u^{n-1}}{n-1} - \frac{1}{n-2} = -\frac{\omega t^{n-1} x}{n-1} - \frac{1}{n-2}$$

$$\frac{1}{n} = -\frac{\cot^{n-1}x}{n-1} - \frac{2}{n-2}$$

$$\hat{J}_1 = \int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx = \log(\sin x) + c$$

Evaluate:
$$\int \sin^3 x \cos^3 x dx$$
.
Sol: Let $\hat{I} = \int \sin^6 x \cos^3 x dx = \int \sin^6 x \cos^2 x \cos x dx = \int \sin^6 x (1-\sin^2 x) \cos x dx$

$$du = \cos x dx$$

$$\therefore \hat{I} = \int u^{b} (1 - u^{2}) du = \int (u^{b} - u^{g}) du = \left(\frac{u^{7}}{7} - \frac{u^{9}}{9}\right) + C$$

$$=\frac{\sin^{7}x}{7}-\frac{\sin^{9}x}{9}+c$$

Evaluate:
$$\int \sin^3 x \cos x \, dx$$
.
Sol: Let $l = \int \sin^5 x \cos^2 x \, dx = \int \sin^4 x \cos^2 x \sin x \, dx$
 $= \int (1 - \cos^2 x)^2 \cos^2 x \sin x \, dx$

$$du = -sinx dx \Rightarrow -du = sinx dx$$

$$\therefore 1 = \int (1-u^2)^2 u^2 (-du) = -\int (1+u^4-2u^2) u^2 du = -\int (u^2+u^5-2u^4) du$$

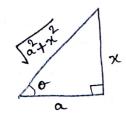
$$= -\left(\frac{u^3}{3} + \frac{u^7}{7} - \frac{2u^5}{5}\right) + c = -\frac{\cos^3 x}{3} + \frac{\cos^7 x}{7} + \frac{2\cos^5 x}{5} + c$$

(32) Evaluate: Josen sin 2xdx. 301: Let I = Jose x sinexdx = Jose x 2 sinx cosx dx (: singx = 2 sinx cosx) $=2\int \cos^3x \sin x \, dx$ du=-sinxdx => sinxdx = -du $\therefore 1 = 2 \int u^3 (-du) = -2 \int u^3 du = -2 \left(\frac{u^4}{4} \right) + c = \frac{-1}{2} \cos^4 x + c$ (33) Evaluate: J sin'x costxdx Sol: Let $\tilde{I} = \int \sin^2 x \cos^4 x dx = \int \left(\frac{1 - \cos 2x}{2}\right) \left(\frac{1 + \cos 2x}{2}\right)^2 dx$ $= \frac{1}{8} \int_{0}^{\infty} (1 - \cos 2x) (1 + \cos^{2} 2x + 2\cos 2x) dx$ $= \frac{1}{8} \int_{0}^{1} \left(1 + \cos^{2} 2x + 2\cos 2x - \cos 2x - \cos^{2} 2x - 2\cos^{2} 2x \right) dx$ $= \frac{1}{8} \int_{0}^{1} \left(1 - \cos^{2}2x + \cos 2x - \cos^{2}2x \right) dx - 0$ $\int \cos^2 2x \, dx = \int \left(\frac{1 + \cos 4x}{2} \right) dx = \frac{1}{2} \left(x + \frac{\sin 4x}{4} \right)$ $\int \cos^3 2x \, dx = \int \cos^2 2x \cos 2x \, dx = \int (1 - \sin^2 2x) \cos 2x \, dx$ $du = 2\cos 2x dx \Rightarrow \cos 2x dx = \frac{du}{2}$

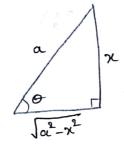
 $\therefore \hat{I} = \frac{1}{8} \left[x - \frac{1}{2}x - \frac{1}{8}\sin 4x + \frac{\sin 2x}{2} - \frac{1}{2}\sin 2x + \frac{1}{6}\sin^3 2x \right]_0^T$ $= \frac{1}{8} \left[\frac{1}{2} x - \frac{1}{8} \sin 4x + \frac{1}{6} \sin^3 2x \right]_0^{T}$

 $=\frac{1}{8}\left[\frac{\pi}{2}\right]=\frac{\pi}{16}$

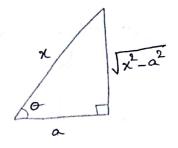
Trigonometric substitution:



$$\tan \phi = \frac{\chi}{a}$$



$$Sin \theta = \frac{\chi}{\alpha}$$



$$\cos \theta = \frac{a}{x}$$

$$X = \frac{\alpha}{\cos \theta} = \alpha \sec \theta$$

(34) Evaluate
$$\int \frac{x^2}{\sqrt{9-x^2}} dx$$
.

Sol: Put x=asino. Here a=3

$$\therefore \int \frac{\chi^2}{\sqrt{9-\chi^2}} dx = \int \frac{(3\sin\theta)^2}{\sqrt{9-(3\sin\theta)^2}} 3\cos\theta d\theta$$

$$x = a sin \theta$$

$$\theta = sin^{-1} \left(\frac{x}{a} \right)$$

$$\theta = sin^{-1} \left(\frac{x}{3} \right)$$

$$\frac{a}{\sqrt{a^2 - x^2}}$$

$$\sin \theta = \frac{x}{a} = \frac{x}{3}$$

$$\cos \theta = \sqrt{\frac{a^2 - x^2}{a}} = \sqrt{\frac{9 - x^2}{3}}$$

$$= \int \frac{9 \sin^2 \theta}{\sqrt{9 - 9 \sin^2 \theta}} 3 \cos \theta d\theta = 9 \int \frac{\sin^2 \theta}{3 \sqrt{1 - \sin^2 \theta}} 3 \cos \theta d\theta$$

$$=9\int \frac{\sin^2\theta}{\cos\theta} \cos\theta d\theta = 9\int \sin^2\theta d\theta = 9\int \left(\frac{1-\cos2\theta}{2}\right) d\theta$$

$$=\frac{9}{2}\left[0-\frac{8in20}{2}\right]+c=\frac{9}{2}\left[0-\frac{25in0cos0}{2}\right]+c$$

$$=\frac{9}{2}\left[\Theta-\sin\Theta\cos\Theta\right]+C$$

$$= \frac{9}{2} \left[sin^{-1} \left(\frac{x}{3} \right) - \frac{x}{3} \sqrt{\frac{9-x^2}{3}} \right] + c$$

$$=\frac{9}{2}\sin^{-1}\left(\frac{x}{3}\right)-\frac{1}{2}x\sqrt{9-x^2}+c$$

Soli Put n=asino > 0=sin-1 (%)

$$\int \int_{a-x^2}^{a-x^2} dx = \int \int_{a-(asino)}^{a-(asino)} a \cos a do$$

=
$$\int \int a^2 - a^2 \sin^2 \theta = a \cos \theta d\theta$$

= $a^2 \int \int \int -\sin^2 \theta = \cos \theta d\theta = a^2 \int \cos^2 \theta d\theta$
= $a^2 \int \int \int \frac{1 + \cos 2\theta}{2} d\theta$

$$=\frac{a^2}{2}\left[0+\frac{\sin 2\theta}{2}\right]+c$$

$$= \frac{a^2}{2} + \frac{a^2}{4} \left(2 \sin \theta \cos \theta \right) + c$$

$$= \frac{a^2}{2} + \frac{a^2}{2} \sin \theta \cos \theta + c$$

$$=\frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right)+\frac{a^2}{2}\frac{x}{a}\sqrt{\frac{a^2-x^2}{a}}+c$$

$$=\frac{\alpha^2}{2}\sin^{-1}\left(\frac{x}{\alpha}\right)+\frac{x}{2}\sqrt{\alpha^2-x^2}+c$$

Sol: Consider,
$$3-2x-x^2 = -(x^2+2x)+3$$

$$= -(x^2+2x+1-1)+3$$

$$= -[(x+1)^2-1]+3$$

$$= -(x+1)^2+1+3=4-(x+1)^2$$

$$\int \frac{x}{\sqrt{3-2x-x^2}} dx = \int \frac{u-1}{\sqrt{4-u^2}} du$$

Put u=asino . Here a=2

$$u = 2 \sin \theta \Rightarrow \theta = \sin^{-1} \frac{u}{2}$$

$$du = 2 \cos \theta = d\theta$$

$$\therefore \int \frac{x}{\sqrt{3-2x-x^2}} dx = \int \frac{u-1}{\sqrt{4-u^2}} du$$

$$= \int \frac{2\sin\theta-1}{\sqrt{4-4\sin^2\theta}} 2\cos\theta d\theta$$

$$\frac{a}{\sqrt{a^2 - u^2}}$$

$$\cos \theta = \sqrt{\frac{a^2 - u^2}{a}} = \sqrt{\frac{4 - u^2}{2}}$$

$$=\int \frac{2\sin\theta-1}{2\cos\theta} = \int (2\sin\theta-1)d\theta$$

$$= -2 \sqrt{\frac{4 - u^2}{2}} - \sin^{-1} \frac{u}{2} + C$$

$$= -\sqrt{4 - (x+1)^2} - sin^{-1} \left(\frac{x+1}{2}\right) + C$$

$$= -\sqrt{4 - x^2 - 1 - 2x} - sin^{-1} \left(\frac{x+1}{2} \right) + c$$

$$= - \sqrt{3 - x^2 - 2x} - 5in^{-1} \left(\frac{x+1}{2} \right) + C$$

(37) Evaluate 3/3 dx x 5/9x2-1

$$\frac{30!}{\sqrt[3]{\frac{1}{3}}} \frac{dx}{x^{5} \sqrt{9(x^{2}-1/4)}} = \frac{1}{3} \int_{\sqrt[3]{2}/3}^{2/3} \frac{dx}{x^{5} \sqrt{x^{2}-(1/3)^{2}}} = \frac{1}{3} \left(\frac{3ay}{x^{5}} \right)$$

Put x=aseco

Here a = 1/3. x = 1/3 seco dx = 1/2 seco tano do

When
$$x = \frac{2}{3} \Rightarrow \frac{2}{3} = \frac{1}{3}$$
 second $\Rightarrow \frac{2}{3} \times 3 = \frac{1}{\cos \theta} \Rightarrow \cos \theta = \frac{1}{2}$ $\Rightarrow \theta = \frac{11}{3}$

$$= \frac{1}{9} \times 3^{6} \int \frac{1}{\sec^{4} \theta} d\theta$$

$$= 81 \int_{-\pi/4}^{3} \cos^{4} \theta \, d\theta = 81 \int_{-\pi/4}^{\pi/3} \left(\frac{1 + \cos 2\theta}{2} \right)^{2} d\theta$$

When
$$x = \frac{\sqrt{2}}{3} \Rightarrow \frac{\sqrt{2}}{3} = \frac{1}{3} \times 200$$

$$\Rightarrow \frac{\sqrt{2}}{3} \times 3 = \frac{1}{\cos \theta} \Rightarrow \cos \theta = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{2}} \left(1 + \cos^{2}\theta\right)^{2} d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{2}} \left(1 + \cos^{2}\theta + 2\cos^{2}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{2}} \left(1 + \frac{1 + \cos^{4}\theta}{2} + 2\cos^{2}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{2}} \left(1 + \frac{1}{2} + \frac{\cos^{4}\theta}{2} + 2\cos^{2}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{2}} \left(\frac{3}{2} + \frac{\cos^{4}\theta}{2} + 2\cos^{2}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{2}} \frac{3}{2} d\theta + \frac{\sin^{4}\theta}{8} + 2\cos^{2}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{2}} \frac{3}{2} d\theta + \frac{\sin^{4}\theta}{8} + 2\sin^{2}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{2}} \frac{3}{2} \left(\frac{\pi}{3}\right) + \frac{\sin^{4}\pi}{8} + \sin^{2}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{2}} - \frac{\sin^{4}\pi}{8} + \cos^{4}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{2}} - \frac{3\pi}{8} + \cos^{4}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{2}} - \frac{3\pi}{8} - \frac{3\pi}{8} + \cos^{4}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{2}} - \frac{3\pi}{8} - \frac{3\pi}{8} + \cos^{4}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{2}} - \frac{3\pi}{8} - \frac{3\pi}{8} - \frac{3\pi}{8} - 1$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{2}} - \frac{3\pi}{8} - \frac{3\pi}{8} - \frac{3\pi}{8} - 1$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{2}} - \frac{3\pi}{8} - \frac{3\pi}{8} - \frac{3\pi}{8} - 1$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{2}} - \frac{3\pi}{8} - \frac{3\pi}{8} - \frac{3\pi}{8} - 1$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{2}} + \frac{7\sqrt{3}}{8} - 1$$

$$= \frac{g_{1}}{3} \int_{1}^{\frac{\pi}{2}} + \frac{7\sqrt{3}}{8} - 1$$

$$= \frac{g_{1}}{3} \int_{1}^{\frac{\pi}{2}} + \frac{7\sqrt{3}}{8} - 1$$

$$= \frac{g_{1}}{3} \int_{1}^{\frac{\pi}{2}} + \frac{7\sqrt{3}}{8} - 1$$

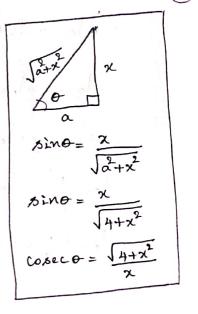
(38) Evaluate
$$\int \frac{1}{x^2 \sqrt{x^2+4}} dx$$
.

Sol: Here
$$\alpha = 2$$

Put $x = a \tan \theta \Rightarrow x = 2 \tan \theta$
 $dx = 2 \sec^2 \theta d\theta$

$$\therefore \int \frac{1}{x^2 \sqrt{x^2 + 4}} dx = \int \frac{1}{4 \tan^2 \theta \sqrt{4 \tan^2 \theta + 4}} 2 \sec^2 \theta d\theta$$

$$= \frac{1}{2} \int \frac{1}{\tan^2 \theta} \int \frac{1}{1 + \tan^2 \theta} \int \frac{1}{\tan^2 \theta}$$



Integration of rational functions by partial traction: Evaluate J sinx cosx dx. When x= T/2 => u= cos T/2=0

$$\frac{50!}{50!} P_u + u = \cos x$$

$$du = -\sin x dx = -\sin x dx = -du$$

$$\frac{\partial S}{\partial x} = \frac{\partial S}{\partial x} + \frac{\partial S}{\partial x} = \frac{\partial S}{\partial x} +$$

$$= -\int \frac{u \, du}{(u+1)(u+2)} = \int \frac{u \, du}{(u+1)(u+2)}$$

$$\begin{array}{c} X + \\ 2 & 3 \\ 1 & 2 \\ u+1 & u+2 \end{array}$$

Consider,
$$\frac{u}{(u+1)(u+2)} = \frac{A}{u+1} + \frac{B}{u+2} = \frac{A(u+2) + B(u+1)}{(u+1)(u+2)}$$

$$\begin{array}{ccc}
Put & u = -2 \\
\hline
-2 & = -B \implies B = 2
\end{array}$$

$$\begin{array}{ccc}
Put & u = -1 \\
\hline
-1 & = A
\end{array}$$

$$\frac{u}{(u+1)(u+2)} = \frac{-1}{u+1} + \frac{2}{u+2}$$

$$= \left(-\log(u+1) + 2\log(u+2)\right)^{3}$$

$$= -\log 2 + 2\log 3 + \log 1 - 2\log 2$$

$$= -3\log 2 + 2\log 3 = \log(2)^{-3} + \log(3)^{2}$$

$$= \log \frac{1}{2^{3}} + \log 9 = \log \frac{1}{8} + \log 9$$

$$= \log \left(\frac{1}{8} \times 9\right) = \log \frac{9}{8}$$

(40) Evaluate
$$\int \frac{x^2+1}{(x-3)(x-2)^2} dx.$$

Sol: Consider,
$$\frac{x+1}{(x-3)(x-2)^2} = \frac{A}{x-3} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$$

$$\chi^{2}_{+1} = A(x-2)^{2} + B(x-3)(x-2) + C(x-3)$$

Put
$$x = 2$$
 $5 = C(-1)$
 $-C = 5 \Rightarrow C = -54$

Put $x = 3$
 $1 = 4A + 6B - 3C$
 $1 = 40 + 6B + 15 \Rightarrow 6B = -54$
 $1 = 40 + 6B + 15 \Rightarrow 6B = -54$

$$\frac{x^{2}+1}{(x-3)(x-2)^{2}} = \frac{10}{x-3} - \frac{9}{x-2} - \frac{5}{(x-2)^{2}}$$

$$\int \frac{x^{2}+1}{(x-3)(x-2)^{2}} dx = 10 \int \frac{dx}{x-3} - 9 \int \frac{dx}{x-2} - 5 \int \frac{dx}{(x-2)^{2}}$$

$$= 10 \log(x-3) - 9 \log(x-2) - 5 \int (x-2)^{-2} dx$$

$$= 10 \log(x-3) - 9 \log(x-2) - 5 \int \frac{(x-2)^{-2}+1}{(x-2)^{-2}+1} dx$$

$$= 10 \log(x-3) - 9 \log(x-2) + 5 \frac{1}{x-2} + C$$

(41) Evaluate
$$\int \frac{2x^2 - x + 4}{x^3 + 4x} dx.$$

Sol: Consider,
$$\frac{2x^2-x+4}{x^3+4x} = \frac{2x^2-x+4}{x(x^2+4)} = \frac{A}{x} + \frac{Bx+C}{x^2+4}$$

Put
$$x=0$$

 $A = AA \Rightarrow A=1$

$$\int \frac{2x^{2} - x + 4}{x^{3} + 4x} dx = \int \frac{1}{x} dx + \int \frac{x - 1}{x^{2} + 4} dx$$

$$= \log_{x} + \int \frac{x}{x^{2} + 4} dx - \int \frac{4x}{x^{2} + 4} dx$$

$$= \log_{x} + \int \frac{du/2}{u} - \frac{1}{2} \tan^{-1} \frac{x}{2} dx$$

$$= \log_{x} + \frac{1}{2} \log_{u} - \frac{1}{2} \tan^{-1} \frac{x}{2} + c$$

$$= \log_{x} + \frac{1}{2} \log_{u} (x^{2} + 4) - \frac{1}{2} \tan^{-1} \frac{x}{2} + c$$

$$= \log_{x} + \frac{1}{2} \log_{x} (x^{2} + 4) - \frac{1}{2} \tan^{-1} \frac{x}{2} + c$$

Put
$$x^2+4=u$$

$$2xdx=du$$

$$xdx=\frac{du}{2}$$

(42) Evaluate / x2 dx.

$$\begin{array}{c|c} x-2 \\ x+2 & x/+2x \\ (-)(-) & \\ & -2x \\ & -2x-4 \\ & (+) & (+) \end{array}$$

$$\frac{\chi^2}{\chi + 2} = \chi - 2 + \frac{4}{\chi + 2}$$

Working rule:
$$\int \frac{px+q}{\int ax^2+bx+c} dx$$

A) Evaluate
$$\int \frac{2x+5}{\sqrt{x^2-2x+10}} dx.$$

$$2x+5=A(2x-2)+B \Rightarrow 2x+5=2Ax-2A+B$$

Equaling like coefficients, we get $2=2A \Rightarrow \overline{A}=1$

$$5 = -2A + B \implies 5 = -2 + B \implies B = 7$$

$$\therefore 2x+5 = (2x-2)+7$$

$$\int \frac{2x+5}{\sqrt{x^2-2x+10}} \, dx = \int \frac{2x-2}{\sqrt{x^2-2x+10}} \, dx + \int \frac{7}{\sqrt{x^2-2x+10}} \, dx$$

Put
$$u = x^2 - 2x + 10$$

du = $(2x - 2) dx$

$$= \int \frac{du}{\sqrt{u}} + 7 \int \frac{dx}{\sqrt{x^2 - 2x + 1 - 1 + 10}}$$
$$= \int u^{-1/2} du + 7 \int \frac{dx}{\sqrt{(x - 1)^2 + 9}}$$

$$= \frac{u^{-1/2+1}}{-1/6+1} + 7 \int \frac{dt}{\sqrt{t^2+3^2}}$$

=
$$\frac{u^{1/2}}{1/2}$$
 + 7 sinh $\frac{t}{3}$ + c

$$=2\sqrt{x^2-2x+10}+7\sinh^{-1}\left(\frac{x-1}{3}\right)+C$$

Put
$$t=x-1$$

at $=dx$

$$\int \frac{dx}{\sqrt{\alpha^2 - x^2}} = sin^{-1} \frac{x}{\alpha} + c$$

$$\int \frac{dx}{\sqrt{x^2 - x^2}} = cosh^{-1} \frac{x}{\alpha} + c$$

$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \sinh^{-1} \frac{x}{a} + c$$

Sol: Put
$$x = A \frac{d}{dx}(x^2 + x + i) + B$$

$$x = A(2x+1) + B \Rightarrow x = 2Ax + A + B$$

Equating like coefficients on both sides, we get

$$0 = A + B \Rightarrow 0 = \frac{1}{2} + B \Rightarrow B = -\frac{1}{2}$$

$$\frac{x}{\sqrt{x^{2}+x+1}} dx = \frac{1}{2} \int \frac{2x+1}{\sqrt{x^{2}+x+1}} dx - \frac{1}{2} \int \frac{dx}{\sqrt{x^{2}+x+1}}$$

$$= \frac{1}{2} \int \frac{du}{\sqrt{u}} - \frac{1}{2} \int \frac{dx}{\sqrt{x^{2}+2 \cdot \frac{1}{2}x + \frac{1}{4}} - \frac{1}{4} + 1}$$

$$= \frac{1}{2} \int u^{-\frac{1}{2}} du - \frac{1}{2} \int \frac{dx}{\sqrt{(x+\frac{1}{2})^{2} + \frac{3}{4}}}$$

$$= \frac{1}{2} \frac{u^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} - \frac{1}{2} \int \frac{dt}{\sqrt{t^{2}+x+1}} + c$$

$$= \frac{1}{2} \frac{u^{\frac{1}{2}}}{\frac{1}{2}} - \frac{1}{2} \sinh^{-1} \frac{t}{\sqrt{3}} + c$$

$$= \sqrt{x^{2}+x+1}} - \frac{1}{2} \sinh^{-1} \left(\frac{1}{\sqrt{3}}(x+\frac{1}{2})\right) + c$$

Put
$$u=x_+^2x_+$$
)
 $du=(2x+1)dx$

Put
$$t = x + \frac{1}{2}$$

 $dt = dx$

(A) Evaluate $\int_{3}^{\infty} \frac{dx}{(x-2)^{3/2}}$ & determine whether it is convergent or divergent.

$$\frac{3}{3} \frac{dx}{(x-2)^{3/2}} = \lim_{k \to \infty} \int_{3}^{k} \frac{dx}{(x-2)^{3/2}} = \lim_{k \to \infty} \int_{3}^{\infty} (x-2)^{-3/2} dx$$

$$= \lim_{k \to \infty} \left[\frac{(x-2)^{-3/2+1}}{-3/2+1} \right]_{3}^{k} = \lim_{k \to \infty} \left[\frac{(x-2)^{-1/2}}{-1/2} \right]_{3}^{k}$$

$$= \lim_{k \to \infty} \left[-2 \frac{1}{\sqrt{x-2}} \right]_{3}^{k} = \lim_{k \to \infty} \left[\frac{-2}{\sqrt{k-2}} + \frac{2}{\sqrt{1}} \right]$$

$$= \frac{-2}{\infty} + 2 = 0 + 2 = 2$$

 $\therefore \int_{3}^{\infty} \frac{dx}{(x-2)^{3/2}}$ is convergent.

Evaluate $\int_{4}^{\infty} \frac{1}{\sqrt{x}} dx$ & determine whether it is convergent or divergent. $\frac{50!}{4} = \lim_{t \to \infty} \int_{4}^{\infty} \frac{1}{\sqrt{x}} dx = \lim_{t \to \infty} \left[\frac{x^{-1/2+1}}{-1/2+1} \right]_{4}^{t}$ $= \lim_{t \to \infty} \left[\frac{x^{1/2}}{1/2} \right]_{4}^{t} = \lim_{t \to \infty} \left[2\sqrt{x} \right]_{4}^{t} = \lim_{t \to \infty} \left[2\sqrt{t} - 2\sqrt{t} \right]_{4}^{t}$ $= \lim_{t \to \infty} \left[2\sqrt{t} - 4 \right] = \infty - 4 = \infty$

Determine whether the given integral $\int_{e}^{\infty} x dx$ is convergent or divergent. Sol: $\int_{e}^{\infty} e^{x} dx = \lim_{t \to \infty} \int_{e}^{\infty} e^{x} dx = \lim_{t \to \infty} (e^{x}) = \lim_{t \to \infty} (e^{t} - e^{0})$ $= \lim_{t \to \infty} (e^{t} - 1) = e^{\infty} - 1 = \infty - 1 = \infty$

: Jexdx is divergent.

(48) For what values of p is $\int \frac{1}{x^p} dx$ convergent?

$$\frac{\partial ol:}{\lim_{t\to\infty} \int \frac{1}{x^p} dx} = \lim_{t\to\infty} \int \frac{1}{x^{-p+1}} \int \frac{1}{x^{-p+1}} dx = \lim_{t\to\infty} \left[\frac{x^{-p+1}}{x^{-p+1}} \right] \int \frac{1}{x^{-p+1}} dx = \lim_{t\to\infty} \left[\frac{x^{-p+1}}{x^{-p+1}} - \frac{1}{x^{-p+1}} \right] \int \frac{1}{x^{-p+1}} dx$$

$$= \lim_{t\to\infty} \left[\frac{1}{x^{-p+1}} - \frac{1}{x^{-p+1}} - \frac{1}{x^{-p+1}} \right]$$

$$=\lim_{t\to\infty}\left[\frac{1-p+1}{-p+1}-\frac{1}{-p+1}\right]=\lim_{t\to\infty}\left[\frac{1}{1-p}\left(\frac{1-p+1}{2-p+1}-1\right)\right]$$

$$= \lim_{t \to \infty} \left[\frac{1-b}{1-b} \left(\frac{1-(b-1)^{-1}}{1-b} \right) \right] = \lim_{t \to \infty} \left[\frac{1-b}{1-b} \left(\frac{1-b}{1-b} \right) \right]$$

$$=\frac{1}{1-p}\left[\frac{1}{\infty}-1\right]=\frac{1}{1-p}\left[0-1\right]=\frac{-1}{1-p}=\frac{1}{p-1}$$
Rough

$$=\lim_{t\to\infty}\left[\frac{1}{p-1}\left(1-\frac{1}{t^{p-1}}\right)\right]$$

=
$$\begin{cases} \frac{1}{p-1}, & p > 1, converges \\ \infty, & p \leq 1, diverges \end{cases}$$

$$\frac{50!}{50!} \int_{1}^{a} \frac{dx}{dy} dy = \int_{1}^{a} \frac{dx}{x} \frac{dy}{y} = \int_{1}^{a} (\log x)^{\frac{1}{2}} \frac{dy}{y}$$

$$= \int_{1}^{a} (\log b - \log 2) \frac{dy}{y}$$

$$= (\log b - \log 2) (\log y)_{1}^{a} = (\log b - \log 2) (\log a - \log 1)$$

$$= (\log b - \log 2) \log a = \log \left(\frac{b}{2}\right) \log a$$

$$\frac{50!}{5!} \int_{-1}^{\infty} \left(\frac{e^{-\frac{1}{3}}}{y} \right) dx dy = \int_{0}^{\infty} \left(\frac{e^{-\frac{1}{3}}}{y} \right) (x)^{\frac{1}{3}} dy$$

$$= \int_{0}^{\infty} \left(\frac{e^{-\frac{1}{3}}}{y} \right) xy dy = \int_{0}^{\infty} e^{-\frac{1}{3}} dy$$

$$= \left(\frac{e^{-\frac{1}{3}}}{-1} \right)^{\infty} = -\left(e^{-\frac{1}{3}} \right)^{\infty} = -\left(e^{-\frac{1}{3}} \right)^{\infty} = -\left(e^{-\frac{1}{3}} \right)^{-\frac{1}{3}}$$

$$= -\left(e^{-\frac{1}{3}} \right) = 1$$

$$\frac{50!}{50!} \int_{0}^{1} e^{x+y} dx dy = \int_{0}^{1} e^{x} e^{y} dx dy = \int_{0}^{1} (e^{x}) e^{y} dy$$

$$= \int_{0}^{1} (e^{x}) e^{y} dy = \int_{0}^{1} (y-1) e^{y} dy$$

$$= \int_{0}^{1} (e^{x}) e^{y} dy = \int_{0}^{1} (y-1) e^{y} dy$$

$$\begin{aligned}
& = \int (ye^{y} - e^{y}) dy \\
& = \int (ye^{y} - e^{y}) dy
\end{aligned}$$

$$\begin{aligned}
& = (ye^{y}) \int e^{y} dy - (e^{y}) \int e^{y} dy
\end{aligned}$$

$$\begin{aligned}
& = (n8e^{\ln 8} - e - (e^{y}) \int e^{y} dy
\end{aligned}$$

$$\begin{aligned}
& = (n8e^{\ln 8} - e) \cdot (e^{y}) \int e^{y} dy$$

$$\begin{aligned}
& = (n8e^{\ln 8} - e) \cdot (e^{y}) \int e^{y} dy
\end{aligned}$$

=
$$\ln 8.8 - e - (e^{\ln 8} - e) - (8 - e)$$

= $8 \ln 8 - e - 8 + e - 8 + e = 8 \ln 8 + e - 16$

(N) (A) Evaluate
$$\int_{1}^{2} \int_{0}^{x^{2}} x dx dy$$

$$= \int_{1}^{2} \int_{0}^{x^{2}} x dx dy = \int_{1}^{2} \int_{0}^{x^{2}} x dy dx \quad (correct form)$$

$$= \int_{1}^{2} x (y)^{2} dx = \int_{1}^{2} x (x^{2} - 0) dx = \int_{1}^{2} x^{3} dx$$

$$= \left(\frac{x^{4}}{4}\right)^{2} = \frac{2^{4}}{4} - \frac{1}{4} = \frac{16}{4} - \frac{1}{4} = \frac{15}{4}$$

(A) Evaluate
$$\int_{0}^{2a} \int_{y}^{x} xyzdzdydx$$
.

$$\frac{30!}{5!} \int_{0}^{2a} x \, dx \, dy \, dx = \int_{0}^{2a} \int_{0}^{x} xy \left(\frac{z^{2}}{2}\right)^{x} \, dy \, dx$$

$$= \int_{0}^{2a} \int_{0}^{x} xy \left(x^{2} - y^{2}\right) \, dy \, dx$$

$$= \int_{0}^{2a} \int_{0}^{x} x \left(yx^{2} - y^{3}\right) \, dy \, dx$$

$$= \int_{0}^{2a} \int_{0}^{x} x \left(yx^{2} - y^{3}\right) \, dy \, dx$$

$$= \int_{0}^{2a} \int_{0}^{x} x \left(yx^{2} - y^{3}\right) \, dy \, dx$$

$$= \frac{1}{2} \int_{0}^{2a} x \left(\frac{x^{4}}{2} - \frac{x^{4}}{4} \right) dx$$

$$= \frac{1}{2} \int_{0}^{2a} x \left(\frac{2x^{4} - x^{4}}{4} \right) dx = \frac{1}{2} \int_{0}^{2a} x \left(\frac{x^{4}}{4} \right) dx$$

$$= \frac{1}{8} \int_{0}^{2a} x^{5} dx = \frac{1}{8} \left(\frac{x^{6}}{6} \right)_{0}^{2a} = \frac{1}{48} (x^{6})_{0}^{2a}$$

$$=\frac{1}{48}\left((2a)^{6}-0\right)=\frac{64a^{6}}{48}=\frac{4}{3}a^{6}$$

(Find the limits of integration II f(x,y) dxdy where R is the triangle

bounded by x=0, y=0, x+y=2.

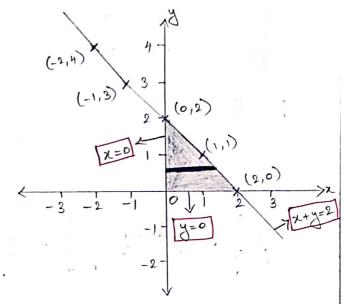
301: Gliven x=0, y=0, x+y=2

x+y=2 => y=2-x

	-			~			
1	ኢ :	-2	-1	0	17	2	
t	7:	4	3	2	1	0	

From the graph, we get

$$\iint \frac{1}{2} \left(x, y \right) dx dy = \iint \int_{0}^{2-y} \frac{1}{4} (x, y) dx dy.$$



(N) Find the lineits of integration in the double integral II f(x, y) dxdy where R is in the first quadrant & bounded x=1, y=0, y2=4x.

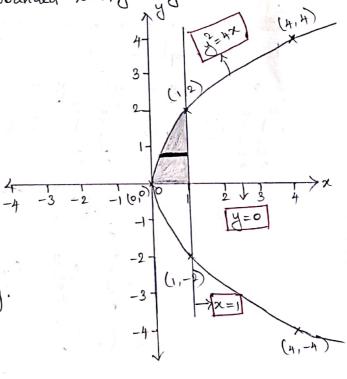
Sol: Given x=1, y=0, y2=4x

$$y^2 = 4x$$
 \Rightarrow $y = \pm \sqrt{4x} = \pm 2\sqrt{x}$

7 :	0	١	4		
7:	0	±2	土井		

From the graph, we get

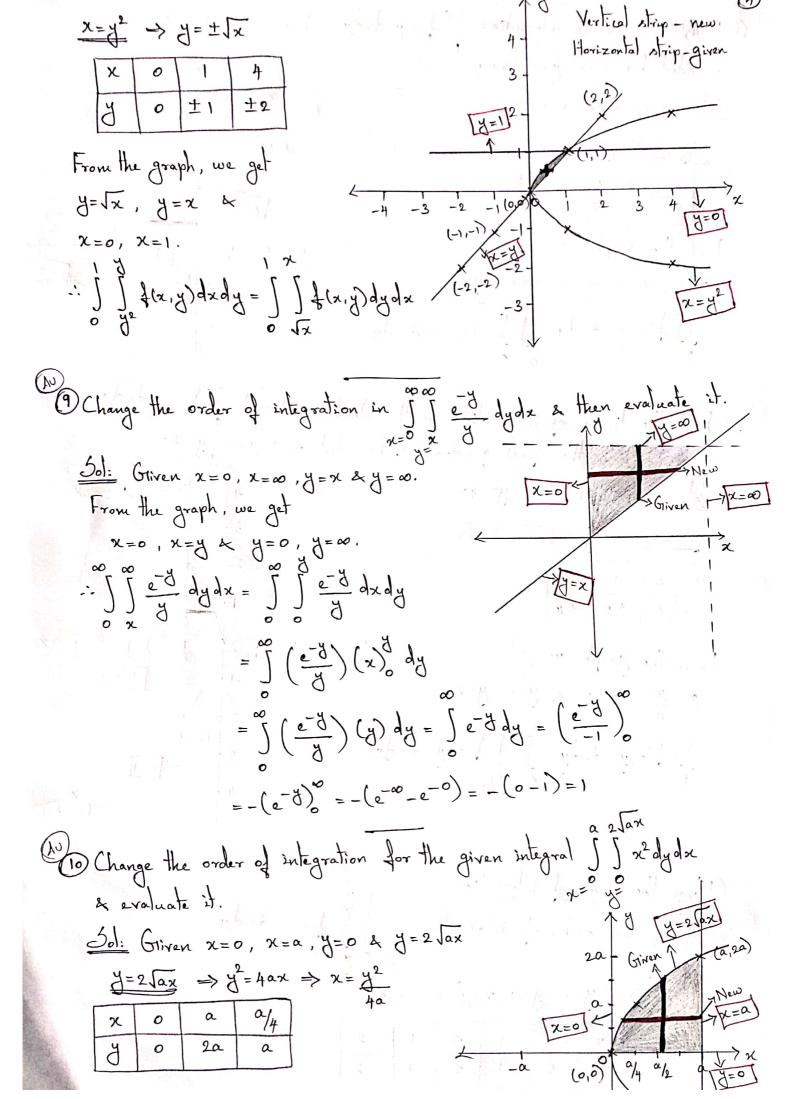
$$x = \frac{y^2}{4}$$
, $x = 1$ & $y = 0$, $y = 2$



Change the order of integration:

(8) Change the order of integration in I] f(x,y)dxdy.

<u>Sol:</u> Given y=0, y=1, x=y² & x=y.



From the graph, we get

$$x = \frac{y^2}{4a}$$
, $x = a + y = 0$, $y = 2a$

$$\int_{0}^{a} \int_{0}^{2\sqrt{a}x} x^{2} dy dx = \int_{0}^{2a} \int_{0}^{a} x^{2} dx dy$$

$$= \int_{0}^{2a} \left(\frac{\chi^{3}}{3}\right)_{y^{2}}^{a} dy = \frac{1}{3} \left(a^{3} - \left(\frac{y^{2}}{4a}\right)^{3}\right) dy$$

$$= \frac{1}{3} \int_{0}^{2a} \left(a^{3} - \frac{y^{6}}{64a^{3}}\right) dy = \frac{1}{3} \left[a^{3}y - \frac{y^{7}}{7 \times 64 a^{3}}\right]_{0}^{2a}$$

$$= \frac{1}{3} \left[a^{3}(2a) - \frac{(2a)^{7}}{7 \times 64a^{3}} \right]$$

$$=\frac{1}{3}\left[2a^{4}-\frac{2\times 64a^{7}}{7\times 64a^{3}}\right]=\frac{1}{3}\left[2a^{4}-\frac{2a^{4}}{7}\right]$$

$$= \frac{a^{\frac{4}{3}} \left(2 - \frac{2}{7}\right) = \frac{a^{\frac{4}{3}} \left(\frac{14 - 2}{7}\right) = \frac{a^{\frac{4}{3}} \left(\frac{12}{7}\right) = \frac{4}{7}a^{\frac{4}{3}}$$

(A) Change the order of integration for the given integral [] (x2+y2)dydx

Sol: Given
$$x=0, x=a, y=\frac{x}{a} + y=\sqrt{\frac{x}{a}}$$

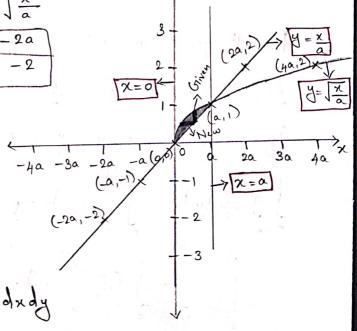
From the graph, we have

$$y=0, y=1, x=ay^{2} + x=ay$$

$$a \int \frac{x}{4}$$

$$= \int \int (x^{2}+y^{2}) dy dx = \int \int (x^{2}+y^{2}) dy dx = \int (x$$

$$\int_{0}^{2} \int_{0}^{2} (x^{2} + y^{2}) dy dx = \int_{0}^{2} \int_{0}^{2} (x^{2} + y^{2}) dx dy$$



$$= \int_{0}^{1} \left(\frac{x^{3}}{3} + xy^{2}\right)^{\frac{3}{4}} dy$$

$$= \int_{0}^{1} \left(\frac{a^{3}y^{3}}{3} + ayy^{2} - \frac{a^{3}y^{6}}{3} - ay^{4}y^{2}\right) dy$$

$$= \int_{0}^{1} \left(\frac{a^{3}y^{3}}{3} + ay^{3} - \frac{a^{3}y^{6}}{3} - ay^{4}\right) dy$$

$$= \left(\frac{a^{3}y^{4}}{12} - \frac{ay^{4}}{4} - \frac{a^{3}y^{7}}{21} - ay^{6}\right)^{\frac{1}{2}} = \frac{a^{3}}{12} - \frac{a}{4} - \frac{a^{3}}{21} - \frac{a}{5}$$

$$= a^{3} \left(\frac{1}{12} - \frac{1}{21}\right) - a\left(\frac{1}{4} + \frac{1}{5}\right) = \frac{a^{3}}{28} - \frac{9a}{20}$$

$$= \frac{a}{4} \left(\frac{a^{2}}{7} - \frac{9}{5}\right)$$

(12) Change the order of integration & hence evaluate I I xydydx.

301:							1 1
Given	<u>,</u> x	=0,7	=1,	y=22	٠. ٢	J=2-	-火.
y=x2 [2	-2	-1	0	'	2	
	3	4	1	0	-	4	-

X	-2	-1	0	,	2
3	4	3	2	1	0

From the graph, we get

$$\hat{I}_{2}$$
: $\chi = 0$, $\chi = 2 - y$, $y = 1$ & $y = 2$

$$\int_{0}^{1/2-x} xydydx = \int_{0}^{1/2} xydxdy + \int_{0}^{2/2} xydxdy$$

$$= \int_{0}^{1/2} \left(\frac{x^2}{2}\right)^{xy}ydy + \int_{0}^{2/2} \left(\frac{x^2}{2}\right)^{2-y}ydy$$

$$= \int_{0}^{1} \frac{1}{2} y dy + \int_{1}^{2} \frac{(2-y)^{2}}{2} y dy$$

$$= \frac{1}{2} \int_{0}^{1} y^{2} dy + \frac{1}{2} \int_{1}^{2} (4+y^{2}-4y) y dy$$

$$= \frac{1}{2} \left(\frac{y^{3}}{3} \right)_{0}^{1} + \frac{1}{2} \int_{1}^{2} (4y+y^{3}-4y^{2}) dy$$

$$= \frac{1}{2} \left(\frac{1}{3} \right) + \frac{1}{2} \left[\frac{4y^{2}}{2} + \frac{4y^{4}}{4} - \frac{4y^{3}}{3} \right]_{1}^{2}$$

$$= \frac{1}{6} + \frac{1}{2} \left[\frac{16}{2} + \frac{16}{4} - \frac{32}{3} - \left(\frac{4}{2} + \frac{1}{4} - \frac{4}{3} \right) \right]$$

$$= \frac{1}{6} + \frac{1}{2} \left[8 + 4 - \frac{32}{3} - 2 - \frac{1}{4} + \frac{4}{3} \right] = \frac{3}{8}$$

(13) Evaluate II xy dx dy over the region in the positive quadrant bounded by $\frac{x}{2} + \frac{y}{2} = 1$. 301: Given x=0, y=0, x + d =1.

From the graph, we get

$$x=0$$
, $\frac{x}{a} + \frac{y}{b} = 1 \Rightarrow \frac{x}{a} = 1 - \frac{y}{b} \Rightarrow x = a\left(1 - \frac{y}{b}\right)$

$$\Rightarrow x=0, x=a\left(1-\frac{y}{b}\right)$$

$$\frac{y=0}{b}, y=b$$

$$= \frac{1}{2} \int_{0}^{b} a^{2} \left(1 - \frac{y}{b}\right)^{2} y dy = \frac{a^{2}}{2} \int_{0}^{b} \left(1 + \frac{y^{2}}{b^{2}} - \frac{2y}{b}\right) y dy$$

$$= \frac{a^{2}}{2} \left[y + \frac{y^{3}}{4b^{2}} - \frac{2y^{2}}{b} \right] dy$$

$$= \frac{a^{2}}{2} \left[\frac{y^{2}}{2} + \frac{y^{4}}{4b^{2}} - \frac{2y^{3}}{3b} \right]_{0}^{b} = \frac{a^{2}}{2} \left[\frac{b^{2}}{2} + \frac{b^{4}}{4b^{2}} - \frac{2b^{3}}{3b} \right]$$

$$= \frac{a^{2}}{2} \left[\frac{b^{2}}{2} + \frac{b^{2}}{4} - \frac{2b^{2}}{3} \right] = \frac{a^{2}b^{2}}{2} \left(\frac{1}{2} + \frac{1}{4} - \frac{2}{3} \right) = \frac{a^{2}b^{2}}{24}$$

(1) Using double integral, find the area bounded by y=x & y=x2.

		7				
= x	x	-2	-1	0	1	2
	J		-1		١	2

From the graph, we get

$$y=x$$
, $y=x^2$, $x=0$ A $x=1$
 $\int_{x}^{x^2} dy dx = \int_{x}^{x} (y)^{x^2} dx$

$$= \int_{0}^{1} (x^{2} - x) dx = \left(\frac{x^{3}}{3} - \frac{x^{2}}{2}\right)_{0}^{1} = \frac{1}{3} - \frac{1}{2} = \frac{-1}{b}$$

Hence the required area is 1/6.

(15) Evaluate II xy(x+y) dxdy over the area between y=x2 & y=x.

Sol: By using Problem no. (14), we have $y=x^2$, y=x, x=0 & x=1.

$$\int_{0}^{\infty} \int_{0}^{\infty} xy(x+y) dy dx = \int_{0}^{\infty} \int_{0}^{\infty} x(xy+y^{2}) dy dx$$

$$= \int_{0}^{\infty} x(x+y) dy dx = \int_{0}^{\infty} \int_{0}^{\infty} x(xy+y^{2}) dy dx$$

$$= \int_{X} \left(\frac{x^{3}}{2} + \frac{x^{3}}{3} - \frac{x^{5}}{2} - \frac{x^{6}}{3} \right) dx$$

$$= \int \chi \left(\frac{5\chi^3}{6} - \frac{\chi^5}{2} - \frac{\chi^6}{3} \right) d\chi$$

$$= \int \left(\frac{5x^4}{6} - \frac{x^6}{2} - \frac{x^7}{3} \right) dx$$

$$= \left(\frac{5x^{5}}{30} - \frac{x^{7}}{14} - \frac{x^{8}}{24}\right)^{1} = \frac{5}{30} - \frac{1}{14} - \frac{1}{24}$$

$$=\frac{3}{56}$$